MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Satbayev University

Institute of Architecture and civil engineering named after T. Basenov

Department of Civil engineering and building materials

Nazifullah Khanjary

« Hotel with in-built underground parking in Semey »

To the diploma project **EXPLANATORY NOTE**

Specialty 5B072900 – Civil Engineering

Almaty 2021

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Satbayev University

Institute of Architecture and civil engineering named after T. Basenov

Department of Civil engineering and building materials

ALLOWED TO PROTECT

Head of Department Master of technical science, lecturer _____N.V. Kozyukova «___» ____2021 yr.

EXPLANATORY NOTE

to the diploma project

On the theme of « Hotel with in-built underground parking in Semey »

5B072900 - "Civil Engeneering"

Prepared by

Scientific adviser

Nazifullah Khanjary

Dostanova S.Kh. Doctor of technical science, Associate professor «____»___2021 yr.

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Satbayev University

Institute of Architecture and Civil Engineering named after T. Basenov

Department of Civil engineering and building materials

Specialty 5B072900 – Civil Engineering

I APPROVE

Head of Department _____N.V. Kozyukova Master of technical science, lecturer «___»____20__ yr.

ASSIGNMENT Complete a diploma project

Student: Nazifullah Khanjary

Topic: «Hotel with in-built underground parking in Semey »

Approved by the Order of the Rector of the University No. 2131-b dated November 24, 2020.

The deadline for the completed work is May 10, 2020.

Initial data for the diploma project: Ust-Kamenogorsk

Structural schemes of the building - frame-wall with cross-beams, structures are made of monolithic reinforced concrete, architectural solution.

List of questions to be developed:

a) Architectural and analytical part: basic initial data, space-planning solutions, heat engineering calculation of enclosing structures (outer wall), lighting calculation, calculation of the foundation option and depth of laying, justification of energy efficiency measures;

b) Calculation and design part: calculation and design of a column and crossbar;

c) Organizational and technological part: development of technological maps, construction schedule and construction plan;

d) Economic part: local estimate, object estimate, summary estimate;

List of graphic material (with exact indication of required drawings):

1 Facade, standard floor plans, parts 1-1 and 2-2 - 4 sheets;

2 KZh columns, specifications - 1 sheet;

3 Technical maps of concrete works, calendar plan, construction site plan - 4 sheets.

11 slides of work presentation are provided.

Recommended main literature:

1 SP RK 2.04-01-2017 "Construction climatology", SN RK; 2 2.04-04-2013 "Construction heat engineering", SN RK 2.03-30-2017 "Construction in seismic zones".

SCHEDULE preparation of thesis (project)

Part	30%	60%	90%	100%	Note	
Architectural and analytical	11.01.2021г 14.02.2021г.					
Calculation and design		15.02.2021г 23.03.2021г.				
Organizational and technological			24.03.2021г 01.05.2021г.			
Economic				01.05.2021г 09.05.2021г.		
Pre-defense	10.05.2021г14.05.2021г.					
Anti-plagiarism, norm control	17.05.2021г31.05.2021г					
Quality control	26.05.2021г31.05.2021г.					
Defense		01.0	6.2021г11.06.20)21г.		

Signatures

consultants and the normative controller for the completed diploma work (project) with an indication of the parts of work (project) related to them

Name parts	Consultants, I.O.F. (academic degree, rank)	the date signing	Signature
Architectural and analytical	Dostanova S.Kh., Doctor of technical sciences, associate professor		
Calculation and design	Kozyukova N.V., Master of technical science, lecturer		
Organizational and technological	Mukhanbetzhanova Zh.S., Master of technical science, lecturer		
Economic	Dostanova S.Kh., Doctor of technical sciences, associate professor		
Norm controller	Bek A.A., Master of technical science, assistant		
Quality control	Kozyukova N.V., Master of technical science, lecturer		

	Scientifi	c adviser
--	-----------	-----------

_ Dostanova S.Kh.

The task was accepted for execution student

_____ Nazifullah Khanjary

Date

"____" _____ 2021 y.

АҢДАТПА

Бұл дипломдық жұмыстың тақырыбы «Семей қаласындағы қонақ үйның дизайны».Бұл ғимараттың сыртқы қабырғалары темірбетон бағанасымен жобаланған Семей провинциясында орналасқан ғимарат.

Менің жоба тезисім келесі бөлімдерден тұрады:

1. Архитектуралық-аналитикалық бөлім.

2. Есептеу және жобалау бөлігі: ғимараттың темірбетонды монолитті қаңқасын ЕТВАЅ 19 бағдарламасында есептеу.

3. Ұйымдастырушылық-технологиялық бөлім: технологиялық карталарды, құрылыс кестесін және құрылыс жоспарын жасау;

4. Экономикалық бөлім: жергілікті смета, объектілік смета, жиынтық смета;

АННОТАЦИЯ

Тема дипломной работы - «Дизайн общежития в городе Семей».

Местоположение данного проекта в Семейском велаяте спроектировано железобетонной колонной, а внешние стены этого здания представляют собой навесную стену. Моя проектная работа состоит из следующих частей:

1. Архитектурно-аналитическая часть.

2. Расчетно-конструкторская часть: расчет железобетонного монолитного каркаса здания в программе ETBAS 19.

3. Организационно-технологическая часть: разработка технологических карт, графика строительства и плана строительства;

4. Организационно-технологическая часть: разработка технологических карт, графика строительства и плана строительства;

ANNOTATION

The topic of this thesis is "design of a Hotel with built-in underground parking in Semey city". This project location located in Semey province, designed by reinforced concrete column, and exterior walls of this building is curtain wall.

My project thesis includes the following parts:

1. Architectural and analytical part.

2. Calculation and design part: the calculation of the reinforced concrete monolithic frame of the building in the program ETBAS 19.

3. Organizational and technological part: development of technological maps, construction schedule and construction plan;

4. Economic part: local estimate, object estimate, summary estimate;

CONTENT

Introduction	7
1 Architectural and analytical part	8
1.1 Architectural planning solution	8
2 Constructive solution	10
2.1 Climatic characteristic of Semey city	10
2.2 Heat engineering calculation	11
2.3 Ventilation system	12
2.4 Calculation of reinforcement beams	13
2.5 Calculation of reinforcement columns	17
3 Structural part of project	19
3.1 Dead loads	19
3.2 Temporary loads	24
3.3 Live loads	24
3.4 Snow loads	26
3.5 Wind loads	28
3.6 Settlement analysis	30
4 Technological and organizational part	31
4.1 Concreting	31
4.2 Main point regarding concreting	31
4.3 Classification and type of concrete	32
4.4 Concreting steps	33
4.4.1 Batching	33
4.4.2 Concrete mixing	33
4.4.3 Carrying concrete	33
4.4.4 Reinforcement	34
4.4.5 Construction and installation of molds	34
4.4.6 Purring concrete	34
4.4.7 vibration and consolidation	34
4.4.8 Concrete maintenance	35
4.5 Determination of labor volume and cost of exposure	35
4.6 Calculation of concrete volume	37
4.7 Set of machines and equipment for concrete work	38
4.8 Life safety and labor protection	40
5 Economic part	41
Conclusion	42
The list of literature	43
Appeddix A	46
Appendix B	47
Appendix C	49
Appendix D	57

INTRODUCTION

The project object is a 4-storey volume with ground floor and underground parking with dimensions in axles 144000mmx102000mm. Parking is for everyone to the Hotel. Underground parking at -7,000 is intended for all people of hotel. There are two entrances and exits. And also, there is a separate parking for disabled people. Elevators and stairs lead to higher levels.

The height of underground parking is 2,8 m, ground floor is 3,8 m and the height top floors are 3,2m.

On the 1st floor on the mark 1.00m are placed:

- entrance zone: tambour, hall, reception, security and waiting area;

- administrative zone: office of administration, accounting;

- dining area: coffee shop and dining room with companions' premises, internet cafes and boutiques;

- Technical zone: staff room, number / nodes, shower s

locker room, warehouse, technical premises, service elevator and staircase.

The drawing part of this project made by Autodesk Revit 2020 engineering software.

Autodesk Revit creates information modeling software for architects, gardeners, structural engineers, mechanical, electrical and plumbing (MEP) engineers, designers and contractors.

the calculation of the reinforced concrete monolithic frame of the building in the program ETBAS 19.02

Technological progress has introduced many inventions in field of housing industry. there's huge difference between new and old construction methods. Use of latest machinery has made its way through the technology. Most of the building parts like pillars, roofs, and concrete blocks are available in prepared forms that increase the speed of construction process greatly. Use of pre-stressed concrete tendons and beams strengthen the buildings together with speedy construction.

1 Architectural part

1.1 Architectural planning solution

In each building, depending on its type and style of use (residential - office - commercial), 3 sections must be designed.

The first part of the architectural design of the building, which includes plans and three-dimensional design of the interior and facade of the building.

The second part of building structure design is based on the internal regulations of a country, from which the design of executive plans is drawn and the building (structure) is executed.

The third part of building installation design, which deals with the design of mechanical and electrical installations.

Each of the above is the responsibility of one person, the first part is the responsibility of architectural engineers, the second part is the responsibility of civil engineers and finally the third part is the responsibility of mechanical engineers.

The project object is a 4-storey volume with ground floor and underground parking with dimensions in axles 144000mm x102000mm. Parking is for everyone to the Hotel. Underground parking at -7,000 is intended for all people of hotel. There are two entrances and exits. And also, there is a separate parking for disabled people. Elevators and stairs lead to higher levels.

The height of underground parking is 2,8 m, ground floor is 3,8 m and the height top floors are 3,2m.

The space-planning decision around the building is.

- Car Parking
- Smoking area
- Accessibility of buildings and structures for people with limited Mobility
- Entertainment
- Waterfall
- Roads for cars around the building
- Open area for walking
- Bus station

First basement:

The parking of construction located in the 1st basement with area of 6369m2.

The car parking has two entrance and two exit, in this parking 140 cars can take place and the parking has the best security because there are two security rooms with skilled guards. The residents of the hotel can use from lifts and stairs from parking up to top floor.

Well thought out, organized and convenient parking for a hotel (hotel) is an important component of hotel service. Modern equipment and automation tools make it possible to simplify the solution of many tasks, to make parking not only convenient and safe, but also commercially profitable.

Depending on the specifics of the hotel (hotel) operation, the parking organized on its territory should provide a sufficient number of parking spaces and convenient use of parking for guests, their guests, employees, visitors to trade and service facilities located in the hotel, participants in events held in conference halls.

First basement:

In the 2nd basement located Gym for residents, with toilets, changing rooms and sport shop, ware houses and a big conference hall, cooking room with difference foods around the world but the main foods are Kazakh national foods like: Besbarmak, Kazy, Shuzhyk, Map, Sorpa, Kuyrdak, Manty, Lagman, Baursaki. ware houses and a big conference hall.

2 Constructive solution

2.1 Climate Characteristic of Semey City

Climate characteristics of the construction according to the Semey city Climatic characteristics of the construction area:

-Outside air temperature:

-The average temperature in the coldest five days - 40 degree celsius (reliability 0.98)

- Average temperature on the coldest days -41 degree celsius (reliability 0.92

- Wind speed pressure - 0.56 KPa (district III)

- Weight of snow layer - 0,8 KPa (III area)

- Seismic properties of the construction site - 6 points

Table 1 - Climatic characteristics

Characteristic	Value
Construction area	Semey
Wind region	III
Average wind speed	30 m/sec
Snow region	III
Average annual rainfall	191mm
The depth of soil freezing	1.43 - 2.03 m
The average temperature in the coldest	- 40 o C
five	

Figure 1- Climate graph of Semey city

2.2 Heat engineering calculation

In areas with such climatic conditions as a sufficiently high level of humidity and low air temperatures, according to [3],

as wall enclosures, structures with several layers with a very effective thermal insulation layer are used. Such a layer must necessarily be placed inside the system, which guarantees its greatest efficiency.

Heat engineering calculation of the bearing wall.

- tB = 22 degree celsius design temperature of the internal air;
- tH = mines degree celsius design winter outdoor temperature;

- $\Delta t_{\rm H} = 4 \circ C$ - standard temperature difference between the temperature of the internal air and the temperature of the internal surface of the enclosing structure;

- mp = 0.63 coefficient taking into account the peculiarities of the construction region;

- $\alpha w = 7.5 \text{ W} / (\text{m2} \cdot ^{\circ} \text{C})$ - coefficient of heat transfer to the inner surface; - $\alpha H = 23 \text{ W} / (\text{m2} \cdot ^{\circ} \text{C})$ - heat transfer coefficient (for winter conditions) to

the outer surface of the enclosing structure;

The thicknesses of the outer wall layers are given in table 2

$$R_0^{TP} = 3.2 \ ^0C/B_T$$

Table 2- Characteristics of the overlap layer

Material name	Υ_0 ,kg/m ³	λ , w/m ² * s	δ,m	$R_n = \delta/\lambda$, m ² * C/w
Plaster on a cement- sand mortar	1800	0,76	0,03	0,039
Stone min. cotton wool	60	0,038	0,1	2,63
Monolithic concrete	2500	1,69	0,20	0,12
Cement-sand mortar plaster	1800	0,76	0,03	0,039

$$R0 = \frac{1}{an} + \frac{\delta_1}{\gamma_1} + \frac{\delta_2}{\gamma_2} + \frac{\delta_3}{\gamma_3} + \frac{\delta_4}{\gamma_4} + \frac{1}{ah} = \frac{1}{0.75} + \frac{0.03}{0.039} + \frac{0.1}{2.63} + \frac{0.2}{0.12} + \frac{0.03}{0.039} + \frac{1}{0.23} = 2.32$$

$$R_0^{\text{TP}} = 3.2 \cdot {}^0\text{C/B}_{\text{T}} = 3.2 \cdot 0.8 = 2.56$$

$${}_0^{\text{TP}} = 2.56 > Ro = 2.32$$

The condition is satisfied. We take the thickness of the insulation 100mm.

2.3 Ventilation system

Ventilation system is one of the most important part of MEP, that can make us a great facility inside of our construction, for the entire project we divided our ventilation system by four blacks where every blacks. Every black has return diffuser, supply diffuser, Ducts and Air handing unit.

The composition of the indoor air is not constant but changes all the time. The breathing of people is accompanied by the consumption of oxygen and the release of carbon dioxide. In addition, in industrial and commercial facilities, oxygen can be consumed during certain technological processes, which are also often accompanied by the release of various gases, dust and other pollutants. As a result, the concentration of oxygen in the air decreases, which makes it poorly breathable. Finding people in such an atmosphere leads to a deterioration in well-being and can negatively affect health. The presence of various pollutants in the air can be directly hazardous to health, create a fire or explosion hazard. Therefore, a mandatory requirement is to equip any building with a ventilation system. It provides air exchange in the interior of the building, removing exhaust air from them, which is replaced by fresh air supplied from the street. Thanks to this, the rooms remain in the optimal amount of oxygen for breathing, there are no harmful gases and suspensions. Also, ventilation should maintain optimal values of temperature, humidity, air velocity. This allows you to maintain a safe and comfortable indoor environment, prevent dampness, mold and mildew on surfaces. For some rooms, natural ventilation is sufficient, which does not involve the use of ventilation equipment. However, at many facilities, it does not allow achieving the required air exchange parameters. In such cases, you must mount the system forcibly.

2.4 Calculation of reinforcement Beams

Figure 2- column section

Table 3 - Beam Element Details Type: DC High

Level	Element	Unique Name	Section ID	Combo ID	Station Loc	Length (mm)	LLRF
Story3	B59	4745	beam500* 350	DConS1 0	5750	6000	1

Table 4- Section Properties

b (mm)	h (mm)	$b_{f}(mm)$	d_{s} (mm)	d_{ct} (mm)	d_{cb} (mm)
350	500	350	0	40	40

Table 5 - Material Properties

E _c (Mpa)	f _{ck} (Mpa)	Lt.Wt Fac (Unitless)	etor _{E_s (Mpa)}	f _{yk} (Mpa)	f _{ywk} (Mpa)
32999.96	30	1	200000	440.02	275

Table 6 - Design Code Parameters

¥с	γs	$\alpha_{\rm CC}$	$\alpha_{\rm CT}$	α_{LCC}	α_{LCT}
1.5	1.15	1	1	0.85	0.85

Table 7 - Design Moment and Flexural Reinforcement for Moment, M_{Ed3}

		Design	Design	-Moment	+Moment	Minimum	Required
		-Moment	+Moment	Rebar	Rebar	Rebar	Rebar
		tonf-m	tonf-m	mm ²	mm ²	mm ²	mm ²
Top Axis)	(+2	-3.3723		194	0	530	530
Bottom Axis)	(-2		1.6861	0	99	530	530

Table 8 - Shear Force and Reinforcement for Shear, V_{Ed2}

Shear V_{Ed}	θ	Shear V _{Rdc}	Shear V _{Rds}	Rebar A _{sw} /S
tonf	deg	tonf	tonf	mm²/m
3.5199	0	7.0134	8.7955	348.53

Table 9 - Torsion Force and Torsion Reinforcement for Torsion, T_{Ed}

Torsion T_{Ed}	T _{cr}	Area A _k	Perimeter, u _K	Rebar A_t / s	Rebar A _{sl}
tonf-m	tonf-m	mm ²	mm	mm²/m	mm ²
1.0872	2.7837	98096.9	1288.2	0	0

Longitudinal reinforcement calculation:

Rectangular beam (35 x 50 cm) class of concrete C30 / 37 (fck =30kgf/mm2, $\Upsilon c = 1.5$, fcd = acc · fcc / $\Upsilon c = 1 \cdot 30$ / 1.5 = 20 MPa). Reinforcement class S500 (f_yk = 440 MPa, fyd383 = f_yk / $\Upsilon_s = 440$ / 1.15 = 383 MPa).

$$M_{ED} = 1.6861 \,\mathrm{tr} \cdot \mathrm{m} = 16.53 \,\mathrm{\kappa H} \cdot \mathrm{m}$$

The values are taken from the Etabs 19.02 program

$$\alpha E \ d \ s = \frac{Meds}{fcd \cdot b \cdot d^2} \tag{1}$$

$$\alpha E \ d \ s \ = \frac{16.53}{20 \cdot 10^3 \cdot 0.35 \cdot 0.50^2} = 0.0094$$

Since $\alpha E d s = 0.008 \le \alpha E d s$, i m = 0.37 (see Fig. B.1. Appendix B), for the given section dimensions and concrete class, compressed reinforcement is required. Taking.

Assuming C2 = 40 mm, αE d s, i m = 0.37, $\xi = \frac{Z}{d} \Longrightarrow Z = 0.66$ X 500 = 330 mm.

(see Figure B.1.), by formulas (7.9) and (7.10) we determine the required cross-sectional area

compressed and stretched reinforcement;

$$\Delta Meds = Meds - Meds, \text{ i } \text{m} = -\alpha E \ d \ s \ \text{, i } \text{m} \cdot fcd \cdot b \cdot d^2 \tag{2}$$

Meds, i m = αE d s , i m · fcd · b · d² = 0.37 · 20· 10³ · 0.35 · 0.5² Meds, i m = 647.5 KH · M

$$\Delta Meds = 16.53 - 647.5 = 630.97 \text{ KH} \cdot \text{m}$$
(3)

$$A_{s1} = \frac{1}{\sigma_{s1d}} \left(\frac{M_{Ed,si}}{z} \stackrel{m}{+} \frac{\Delta M_{Ed,s}}{d - c_2} + N_{Ed} \right)$$

As1 = $\frac{1}{383} \left(\frac{647.5}{330} + \frac{630.97}{(460 - 4)} + 34 \right) = 9.78 \text{ C}M^2$
 $d = h - c2 = 500 - 40 = 460mm$

acceped; kl (5Ø20) S500 (As1 = $12.7 CM^2$)

Calculation of transverse reinforcement

Beam with rectangular section $(35 \times 500 \text{ cm})$

Class of concrete C30 / 37 (fck =30, $\Upsilon c = 1.5$, fcd = acc \cdot fcc / $\Upsilon c = 0.85 \cdot 25$ / 1.5 = 14.1 MPa). Reinforcement class S500 (f_yk = 440 MPa, f_v = f_yk / $\Upsilon_s = 440$ / 1.15 = 393 MPa).Bending moment acts on the beam M_{ED} =35 kH·m. Sectional area stretched reinforcement $A_s = 9.78 \ cm2$; 5Ø20 S500,

Constant floor loads

$$(g_k = 7.179 \frac{\kappa H}{M})$$

and Self-weight of the balck:

 $(0.35 \cdot 0.45 \cdot 25 = 3.375 \frac{\kappa H}{M})$

The values are taken from the Etabs 19.02 program Then:

$$(g_k = 8.2 + 3.375 = 11.2 \frac{\text{KH}}{\text{M}}).$$

Variable load $(q_k=13.34 \text{ kH/m}; \gamma_q = 1.5)$, and constant load
 $q_k = 13.34 \cdot 1.5 = 21.1 \text{ kH/m}$
 $Q_{max} = q_k + g_k = 31.14 \text{ kH/m}$
 $V_{Ed} = (q_k + g_k) \cdot \text{L}/2 = 30.564 \cdot 5.3/2 = 120.99 \text{ kH}$

The length of the section on which the transverse reinforcement must be installed according to the calculation is determined from the diagram of the shear forces. To do this, we determine the lateral force that concrete can perceive by the formula:

$$V_{Rd;c} = \left[\frac{0.18}{\gamma_c} \cdot K \cdot \left(100p_l \cdot f_{ck}\right)^{\frac{1}{3}}\right] \cdot b_w \cdot d \tag{4}$$

$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{460}} = 1.66 \le 2$$

$$d = h - c2 = 500 - 40 = 460mm$$

$$p_l = \frac{A_{s1}}{b_w * d} = \frac{348 \ mm^2}{300 \ mm^* 460 \ mm} = 0.0025 < 0.02$$

$$V_{Rd;c,max} = \left[\frac{0.18}{1.5} \cdot 1.66 \cdot \left(100 \cdot 0.0025 \cdot 30\right)^{\frac{1}{3}}\right] \cdot 300 \cdot 460 = 838 \ \text{KH}$$
But not less V is a seconding to the formula:

But not less $V_{Rd;c,min}$ according to the formula:

$$V_{Rd;c,min} = [0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}] b_w \cdot d$$
(5)

$$V_{Rd;c,min} = [0.035 \cdot 1.66^{3/2} \cdot 30^{1/2}]300 \cdot 460 = 565 \text{ kH}$$

So far as

 $V_{Rd;c,min} < V_{Ed;max} < V_{Rd;c}, max=$; 541 кH < 550кH <838 кH we install transverse reinforcement based on design considerations. $V_{Ed;max} = V_{Ed;} \cdot L = 91.7 \cdot 6 = 550$ кH/м

$$V_{Ed}$$
;=($q_k + g_k$) ·L/2=30.564 ·6/2=91.7 кH
calculated site is:

Thus, the calculated site is:

$$\alpha_w = \frac{V_{Ed;max} - V_{Rd;c,min}}{q+g} \tag{6}$$

$$\alpha_w = \frac{429.25 - 3}{30.564} \cdot \frac{.9}{9} = 1.38 \text{ m}$$

The step of the transverse reinforcement is determined by the formula:
$$s \le 0.75 \text{ d}$$
$$s \le 0.75 \cdot 460 = 345 \text{ mm}$$

Принимаем шаг поперечной арматуры s=345mm

$$A_{sw} = \frac{V_{Ed;max} \cdot s}{d_z f_{sw} \cos \gamma}$$
(7)

$$A_{sw} = \frac{55 \cdot 10^3 \cdot 34}{490 \cdot 27 \cos 40^\circ} = 1838.2 \text{ mm}^2 = 18.38 \text{ cm}^2$$

Where $(d_z = 490 \text{ mm})$ The first design section is assigned at a distance. We set the angle of inclination of the cracks to the Gorontalo

$$\Upsilon = 40^{\circ}$$

We accept 16 Ø 10 , $A_{sw} = 20.1 \text{ cm}^2$, s=310 mm.
In this case, the following conditions must be met:

$$\frac{A_{sw} \cdot f_{sw}}{b_w \cdot s} \leq 0.5 \cdot v \cdot f_{cd}$$
(8)

where v is the coefficient that takes into account the reduction in the strength of concrete under compression and tensile conditions and is equal for heavy concrete:

 $V = 0.6(\frac{f_{ck(M\pi a)}}{250}) = 0.6(\frac{30}{250}) = 0.072$ $V_{Ed;max} < V_{Rd;c}, max = \frac{v \cdot f_{cd} \cdot b_w \cdot d_z}{\cot 40 + \tan 40} = \frac{0.07 \cdot 30 \cdot 300 \cdot 490}{\cot 40 + \tan 4} = 563480.7 \text{ H} = 563.5 \text{ kH}.$ $V_{Ed;max} = 550 \text{ kH} < V_{Rd;c}, max = 563.5 \text{ kH}, \text{ the condition is met.}$ Other sections are calculated in the same way.

2.5 Calculation of reinforcement columns

Figure 3 – column section

Table 10 - Column Element Details Type: DC High

Leve	Elem	Unique Nomo	Section	Combo	Statio	Length	SOM	LLRF
1	ent	Inallie	ID	ID	II LOC	(IIIIII)		
Story	C125	3739	colum	DConS3	0	3200	Nominal	1
6	C125	5157	500*500		V	5200	Stiffness	1

Table 11 - Section Properties

b (mm)	h (mm)	dc (mm)	Cover (Torsion) (mm)
500	500	60	30

Table 12 - Material Properties

E _c (Mpa)	f _{ck} (Mpa)	Lt.Wt Facto (Unitless)	r _{Es} (Mpa)	f _{yk} (Mpa)	f _{ywk} (Mpa)
32999.38	30.0083	1	200000	440	275

Table 13 - Design Code Parameters

¥с	γs	$\alpha_{\rm CC}$	$\alpha_{\rm CT}$	α_{LCC}	$\alpha_{ m LCT}$
1.5	1.15	1	1	0.85	0.85

Table 14- Axial Force and Biaxial Moment Design For N_{Ed} , M_{Ed2} , M_{Ed3}

Design	Design	Design	Minimum	Minimum	Rebar	Rebar
N _{Ed}	M _{Ed2}	M _{Ed3}	M2	M3	Area	%
tonf	tonf-m	tonf-m	tonf-m	tonf-m	mm ²	%
33.9686	1.1214	0.6794	0.6794	0.6794	2500	1

Table 15 - Axial Force and Biaxial Moment Factors

	M _{0Ed} Moment tonf-m	M _{add} Moment tonf-m	Minimum Ecc mm	β Factor Unitless	Length mm
Major Bend(M3)	-0.2275	0.2991	0	1	2700
Minor Bend(M2)	0.3542	0.2991	0	1	2700

Table 16 - Axial Compression Ratio

Cono Consoity (a - A f -)	Compressive Patio	Comp	Seismi	Ratio
tonf	N= $\frac{1}{2}$	Ratio	c	OKay
	$N_{Ed} / (\alpha_{cc} \cdot A \cdot I_{cd})$	Limit	Load?	?
509.8581	0.067	0.55	No	Yes

Table 17 - Shear Design for V_{Ed2} , V_{Ed3}

	Shear V_{Ed}	Shear V _{Rdc}	Shear V _{Rds}	$tan(\theta)$	Rebar A _{sw} /s
	tonf	tonf	tonf	Unitless	mm²/m
Major, V _{Ed2}	0.1799	16.0831	0	0.4	0
Minor, V _{Ed3}	0.5199	16.0831	0	0.4	0

- Rules: Joint shear stress ratio is only determined for a station
- a) if the station has a beam-column joint (top of the column),
- b) if the frame is a DCHe or DCM moment resisting frame,
- c) if the column above is a concrete column when it exists,
- d) if all the beams framing into the column are concrete beams
- e) if the connecting member design results are available, and
- f) if the load combo involves seismic load.

Calculation of longitudinal reinforcement: columns with square section(50 x 50cm)

class of concrete C25 / 30 (fck =30kgf/mm2, $\Upsilon c = 1.5$, fcd = acc \cdot fcc / $\Upsilon c = 1 \cdot$ 30 / 1.5 = 20 MPa). Reinforcement class S500 (f_yk = 440 MPa, fyd383 = f_yk / Υ _s = 440 / 1.15 = 383 MPa).

$$\frac{c_1}{h} = \frac{c_2}{h} = \frac{50}{500} = 0.1$$

 $N_{ed} = 33.96$ Т=333.03 кH; $M_{ED} = 1.12$ т·м = 10.98 кH·м.

(efforts from RSN1 in column 3739) The values are taken from the Etabs 19 software

$$\alpha_{Eds} = \frac{N_{ed}}{b \cdot h \cdot f_{cd}} \tag{9}$$

$$\alpha_{Eds} = \frac{333.03 \cdot 10^3}{500 \cdot 500 \cdot 20} = 0.22 \rightarrow \omega_{tot} = 0.25$$
$$A_{s,tot} = \omega_{tot} bh/(\frac{f_{yd}}{f_{cd}})$$
(10)

$$A_{s,tot} = \frac{0.25 \cdot 500 \cdot 500}{(\frac{383}{20})} = 3262.7 \text{ mm}^2 = 32.627 \text{ cm}^2$$

 $A_{s1} = A_{s2} = 32.627 \text{ cm}^2 \text{accept } 120/18 \text{ S600} (A_s = 30.48 \text{ cm}^2).$

We accept transverse reinforcement constructively proceeding from the following condition that the diameter should be:

Figure 4 – section of column

3 Structural part of the project

Dead load, own weight of floor, weight from wall, soil pressure, Supper dead load, temporary load, live load, wind and snow load. so, for the own weight of the structure and Constant loads we have

1 In combination of loads, constant loads from bearing and non-bearing Structures should be considered as a whole, as one impact.

2 Loads from added or moved carriers or non-bearing.

3 Structures should be considered for the most unfavorable design. combinations.

4 The design should consider permanent loads from new pavements. Of communications laid after the end of the work.

6 P In the basic design situation, the water level should be considered. But mostly we take one when the height of floor is more than 10 floors if it was less than 10 floors, we take 0.9 so four project we ought to take 0.9 according to the EN1990, 4.1.2

3.1 Dead loads

Dead load of construction is the own weight of materials and elements. We can find it from specific materials density and their thickness.

Own weight of floors	Layer thickness, m density, kg/m ³	Characteristic load, kg/m2
For foundation floor		
G and G an	0.08	90
liooring	1000	80
	0.05	70
Expanded polystyrene	1400	/0
	0.15	(0)
Roofing materials 2 layers (insulation)	200	60
	0.05	00
Reinforced cement-sand screeds	1800	90
Total for foundation floors		300=0.30KN/m ²
For the floors		
T 1.4	0.08	16
Insulation	200	16
	0.005	10.0
Plastering	2040	10.2
	0.21	504
Keinforced cement-sand screeds (PCC)	2400	504
Glue		1.2

Table 18 - Materials own weight according to the EN1990, 4.1.2

Parquet hoard(flooring)	0.015	11.7
l'arquet board(nooring)	780	11.7
Total for first floor		543.1=5.4KN/m ²
Own weight of roof floor		
	0.0012	0.42
Roof cladding	7850	9.42
Vapor barrier		0.015
	0.088	17.6
Insulation foam concrete	200	17.0
	0.3	720
Reinforced cement-sand screeds (PCC)	2400	/20
	0.01	- 20.4
Plastering	2040	20.4
	0.001	0.1
Bituminous waterproofing bottom layer	100	0.1
	0.001	0.1
Bituminous waterproofing top layer	100	0.1
Total for a flat roof		7.6735 KN/m ²

For wall materials we have the following properties

-Shear wall 25cm by the height of 2.8m and 3.8 m in two floors underground. -External self-supporting wall 28cm made of brick, 0.05m glass.

-Internal self-supporting walls 15cm made of blocks by the height of 3.2m.

Figure 5 - shell forces of dead load

Figure 6 - Fmax diagram of dead load

Figure 7 - Mmax diagram of dead load

Wall construction	Layer thickness, m	Characteristic
	density, kg / m3	load, kg / m
External self-supporting w	alls (wall height 3.2 m):	, 8
Plaster based putty.	0.05	4.75
	95	
Aerated concrete	0.015	9
	600	
Glassing	0.05	104
	2600	
Air gap	0.001	0
Brick as main material	0.3	540
	1800	
Total for self-supporting w	valls:	657.75 kg/m
External supporting (shear) walls by height 5m	
RCC concrete	0.25	600
	2400	
Plastering	0.05	4.75
	95	
Insulation materials	0.12	216
	1800	
Total for parapet:		820.75 kg/m
Partitions (height 4 and 5n	n)	
Drywall	0.125	33
	600	
Sound insulation Isover	0.075	4.62
	14	
Drywall	0.0125	33
-	600	
Total for partitions:		70.62 kg/m

Table 19 – Materials of wall

3.2 Temporary Load

To find out temporary loads we should check the CH-PK EN 1991-1:2000/2011 table 6.1 to 6.2 there we will take according to the given region Semey and we will also see the category of our building which are divided into four (A, B,C&D) so here I chosen category C3 First for slab equal to 5kN/m²or 0.5t/m², for stairs 5kN/m²or 0.5t/m² and for Non-operational roof 1.2kN/m².

3.3 Live load

For the live load of our construction, we have a category C3 public library, where the loads are considered by the following.

Table 20 - Live loads on floors, balconies and stairs of buildings

Usage categories	qk, kN / m 2	Qk, kN/m2
C3	5	5

Figure 8– Fmax diagram live load

Figure 9 - Mmax diagram live load

Figure 10 - displacement of live load

3.4 Calculation of Snow Load

Snow loads on the building should be determined from the following formula. For coefficient of snow load i have the I region Atyrau city.

$$\mathbf{S} = \boldsymbol{\mu}_{i} \cdot \mathbf{C}_{e} \cdot \mathbf{C}_{t} \cdot \mathbf{S}_{k} \tag{11}$$

where S_{K} - calculation value of the extreme snow load on the ground for specific area=1.5kpa

Ce is the environmental coefficient or exposure factor if protected =1 Ct is the temperature coefficient if heated = 1 μ_i is coefficient of snow load form for general buildings=0.8 S = 0.8 · 1 · 1 · 1.5=1.2kpa = 102 kgf/m²

Figure 11 - Snow load

Figure 12 - displacement of snow load

3.5 Calculation of Wind load

The wind load acts on the building from the windward (active pressure) and the windward side (suction). Calculated intensity value of wind load. And we have 3 floors which have difference height and position, while two floors are underground which are do not affected by wind load and one floor is above the ground by the height of 3.2m. Span between two columns is 6 for 17 span we have 102m, the load will affect 15.5% from the East and by the other side

The wind load is taken from Eurocode EN 1991.1-1 2002/2011 is V region, in Semey city.

Figure 13 - Wind rose in Semey

1. External pressure on the windward side (zone D): Separation of the building in height into zones corresponding to the base height for external pressure ze according to method 7.2.2 (1) at b = 60 m < h = 11 < 2b = 120 m

In this we only need to calculate only one zone of the construction because the height is lees than b

Wind pressure according to formula we:

$$W_e = q_p(z_e) \cdot c_{pe} \tag{12}$$

where $q_p(ze)$ is the peak value of the velocity wind pressure

 Z_e is the base height for external pressure according to section 7 [5]. C_{pe} -aerodynamic coefficient of external pressure

$$q_{p}(ze) = c_{e}(z) \cdot q_{b} \tag{13}$$

Where h/d=V and $c_{pe}=0.56$ by the speed of 30m/sec Basic speed wind pressure for wind region $q_b=1$ kpa.

1 able 21 - w mu press

<i>w_e</i> =102м	$c_e 102: = 1.43$	$w_e = 1.43 \cdot 560 \cdot 1 = 800.8$ pa = 80.1 kg/m
$w_e = 144_{\rm M}$	$c_e 144:=1.9$	$w_e = 1.9 \cdot 560 \cdot 1 = 1064 \text{ pa} = 106 \text{ kg/m}$

Figure 14 - Wind pressure in zones

Figure 15 - Wind pressure in zones

Figure 16 - Wind load

Figure 17- Wind load

3.6 Settlement Analysis

Settlement is that the term wont to describe the action by which a grip pushes into the bottom in response to the load to which it's subjected. The quantity of settlement may be a function of the dimensions of the footing, the load to which the footing is subjected, and also the characteristics of the soil directly beneath and, for a few distance, below and beyond the footing. There are procedures by which the number of settlement may be approximated for any given condition of footing size, loading, and soil characteristics. The experience gained by observation of the time-related performance of countless buildings has given the architect and engineer insight on what quantity settlement can safely be permitted under a given set of circumstances. Settlement can never be eliminated, unless referring to solid rock. It will be controlled, however, by selecting the sort of foundation best suited to the kind of soil found at the location, and so by establishing an allowable soil bearing pressure as a function of allowable settlement

Figure 18 - Soil pressure

Figure 19 - Soil pressure

Figure 20 - Soil pressure

4 Technological and organizational part

4.1 Concreting

Concreting is one of the most important, challenging and attractive stages of construction in the world, which is performed on concrete and metal structures.

Prior to the early eighteenth century, concreting was an unfamiliar word. In 18322, it was the Egyptians who initiated the concreting industry and the construction of strong structures using a combination of gypsum and lime.

In general, pouring concrete at very high and low temperatures leads to lack of concrete resistance, so it is better to do the formwork at the right temperature.

Pouring concrete at very low temperatures is a problem due to the freezing of water inside the concrete. When water freezes, cement and sand particles shrink. By reducing the adhesion between the concrete components, its strength decreases.

If you have to make concrete at low temperatures, use a chlorine-nitrate solution to prevent water from freezing for concreting. Of course, using hot water to prepare concrete can reduce the difficulty of pouring concrete in cold weather to some extent.

Pouring concrete at high temperatures reduces the strength of concrete due to increased long-term productivity, thermal cracking and the tendency to shrink due to drying, reduced concrete strength, increased corrosion rate of reinforcing steel and reduced concrete surface uniformity.

When stopping pouring concrete, it is best to use iron to seal the sides of the concrete. It goes without saying that the concrete cut should be vertical, not horizontal. Because it significantly reduces the strength of the structure.

4.2 Main points regarding concreting

The concrete must have a pasty state so that it can easily go into the space inside the rebars and flow.

Concrete that is re-added to make it smoother may lose its original setting and can be reused if approved by the supervising engineer.

The distance between the concreting site and the concrete pouring point should be as small as possible.

If you are concreting on the ground, the area should be clean.

If you do concreting at height, for example columns, be sure to use a fall shot. What equipment do we need to do concreting at height?

If you want to do concreting at height, one of the oldest methods is to use a lift. In this method, we pour the concrete into a special container. This method reduces the work speed. This old method is not recommended for large projects and also reduces the quality of concrete.

4.3 Classification and types of concrete

Concrete is obtained by mixing a binder (usually cement), fine (sand) and coarse (crushed stone or gravel) aggregate, water and, if necessary, special additives. The density of concrete in the hardened state ranges from 2200 kg / m3 to 2500 kg / m3. When choosing the type, brand, class of concrete for structures, the engineer is guided by calculations, norms and recommendations. The full cycle of concrete curing is 28 days, under normal conditions the temperature is up to 20 degrees and the humidity is at least 80-90 percent. In order to understand these designations, consider the main characteristics of concrete mixes:

Heavy (regular) or lightweight concrete. The main difference between such concretes is in the aggregate. Heavy concrete contains coarse aggregate - gravel or pebbles. In the composition of lightweight concrete (types: aerated concrete, perlite concrete, foam concrete), blast-furnace slag (slag concrete) is filled with relatively light materials - expanded clay, perlite, foamed powder. Heavy concretes are applicable for structural elements (foundations, beams, floors), light ones are used for structural and heat-insulating elements (wall blocks, lightweight ceilings). Types of fractions (sizes) of coarse aggregate. Coarse-grained concrete - with aggregate greater than 10 mm, fine-grained concrete in which aggregate less than 10 mm is used.

4.4 Concreting steps

4.4.1 Batching

To the process of measuring various materials used in concrete, including cement, coarse, sand, water and... to make the desired concrete; Say categories. Classification can be done in two ways: volumetric classification, weight classification

In volumetric classification, the quantity of concrete materials is volume, and in weight classification, this quantity is weight.

4.4.2 Concrete mixing

In this process, all concrete materials are classified in the required proportions; They are mixed together until they reach a uniform color and texture. Mixing by hand and mixing machines are two different methods for this step.

Note: To achieve the best quality, the ingredients must first be mixed together in dry conditions and then in wet conditions.

4.4.3 Carrying concrete

When the concrete mixing step is done correctly; Fresh concrete must be taken

to the construction site. This stage is called transportation. The concrete is then poured onto the formwork in its proper place. Two methods of concrete transfer:

1) Manual transfer;

2) Mechanical transfer.

4.4.4 Reinforcement

Rebars and braces and... should be installed according to the design drawings of the beams and columns of the building and cleaned of any contamination such as oil. It should be noted that incorrect rebar can cause structural damage and make the whole costly concreting process inefficient.

4.4.5 Construction and installation of molds

Formwork must be designed to withstand the construction loads that are applied to it during the concreting process; Include the weight of fresh concrete, the weight of workers and operators and the weight of machinery used to resist. Various materials such as wood, steel and aluminum can be used for molds.

4.4.6 Pouring concrete

This step is very important and several points must be observed during the concreting process:

Concrete should be poured as close as possible to its final position to prevent it from separating.

Spreading and moving the concrete horizontally should be prevented.

Concrete should be poured in uniform layers and its accumulation should be avoided in large mounds or sloping layers.

4.4.7 vibration and consolidation and surface polishing

During the compaction stage, air bubbles are removed from the fresh and poured concrete. The reason for this is to increase the final strength of the concrete by strengthening the adhesion between the concrete and the rebars. Different internal and external vibrators are used for this stage. Each concreted layer must be thoroughly compacted before pouring the next layer, and the subsequent layers must be poured while the underlying layers are still plastic, so that a uniform construction is achieved.

Concrete poured must be compacted so that it gives the structure of the desired strength and durability. The method of complexion is visually demonstrated here: Freshly placed concrete is to be compacted well to make concrete dance and impervious

Compaction can either be done manually or mechanically. Manual compaction is done either by rodding with steel rods or tamping using wooden cross beams, this method is usually employed for small jobs. Mechanical compaction is done by using vibrators, these are very effective in compacting stiffer concrete resulting in highly dense, and how much in this country which Bones well with the reinforcement, effective compaction and haunts us the strength and durability. In most of the RCC Works need vibrators are used for compaction in most of the RCC Works need vibrators are used for compaction, the needle of the vibrator should be immersed vertically into concrete and should remain vertical throughout the operation. Concrete at a location mustn't be vibrated for quite 15 seconds. The needle needs to be withdrawn when the air bubbles cease to look. Vibrator mustn't be held touching the reinforcement, tube of the vibrator shouldn't be bent at sharp angles to avoid breaking. the spacing of the vibrator insertion Shall be 15cm for 20 mm needle and 30 cm for 40 mm needle effective compaction makes the concrete dense and impervious over compaction results in segregation. Compacting concrete using vibrators is more practical than manual compaction.

4.4.8 Concrete maintenance

Maintenance is the stage at which the concrete must retain its moisture for a certain period of time to complete its hydration reaction. This period is different for different concretes with different properties; But for ordinary concrete it takes about 8 days.

4.5 Determination of labor volume and cost of exposure

The assignment of specific ways and means to carry out the

The bot allows you to specify the composition and scope of work and go to their specific labor intensity on the projected facility. The

The labor intensity is calculated using the data in Table. 1 to 4 and norms of time for work in accordance with ENIR [3, 4].

The calculation is carried out in the form of "Statement of labor costs, machine time-costs and labor costs "(Table 8); when compiling a statement the composition of the workers' links according to the ENIR is determined,

The total costs of labor, computer time and labor costs are

Diastral on the amount of performance of the whole complex of works on erection above the top of the building (the sum of the values in columns (8), (9), (13)).

Process name	Unit	Volume	instification	Rate of time	
1 TOCCSS Hanne		v orunic	Justification	With the second	1.
		OI WORK		Working	drive
Steel work (bar	Ton	456.0886	Column, slab	2057	
bending)					
Form working	m^2	8379.2	-	2095	
Concrete purring	m ³	1630.6	-		6
Brick masonry	m ³	710.78	Walls	1067	
Opening	m ³	162	Windows,	32	
			doors		
Heat insulation	m^2	1870	Walls	187	
work					
Moisture	m^2	7776	-	778	
insulation work					
Plastering	m^2	3740	-	300	
painting	m^2	3740	-	159	
Screed	m^2	7776	floor	162	
Roofing work	m ³	6540		231	

Table 22 - The cost of labor time machine time and labor costs

Table 23 - List of mechanisms, equipment and devices for transportation, laying and compaction of concrete mixture

Name of	Designated	Main	Required
(Mark)		parameters	Number
Crane	letting and	for lifting	4
	operating of own or	heavy loads	
	leased real estate		
Concrete	consists of tank	homogeneously	6
mixer	system, mixing	combines cement	
	system, driving		
	system		
Vibrating	The frequency	Strickling and	6
Fresno	of vibration varies up	vibrating	
	to 15000 rpm		
Screed	scraping of	Basic Info	4
ruler machine	concrete ground	Model NO. ZPC-25	
	surface, improve the	Certification	
	density of concrete		
4.6 Calculation of concrete volume

Columns: 500 x 500 First basement: $V = 0.5 \cdot 0.5 \cdot 2.8 = 0.7 \text{ m}^3$ Total concrete volume in First basement: $V_{total} = 0.7 \cdot 224 = 156.8 \text{ m}^3$ Second basement : $V = 0.5 \cdot 0.5 \cdot 3.8 = 0.95 \text{ m}^3$ Total concrete volume in second basement: $V_{total} = 0.95 \cdot 224 = 212.8 \text{ m}^3$ First floor : $V = 0.5 \cdot 0.5 \cdot 3.2 = 0.8 \text{ m}3$ Total concrete volume in second floor: $V_{total} = 0.8 \cdot 181 = 144.8 \text{ m}3$ Second floor: $V = 0.5 \cdot 0.5 \cdot 3.2 = 0.8 \text{ m}^3$ Total concrete volume in second floor: $V_{total} = 0.8 \cdot 196 = 156.8 \text{ m}^3$ Third floor : $V = 0.5 \cdot 0.5 \cdot 3.2 = 0.8 \text{ m}^3$ Total concrete volume in third floor: $V_{total} = 0.8 \cdot 196 = 156.8 \text{ m}^3$ Fourth floor: $V_{total} = 0.8 \cdot 152 = 121.6$ Beams : 500x350 First basement $V = 0.5 \cdot 0.35 \cdot 6 = 1.05 \text{ m}^3$ Total concrete volume in first basement: $V_{total} = 1.05 \cdot 214 = 224.7 \text{ m}^3$ Second basement : $V = 0.5 \cdot 0.35 \cdot 6 = 1.05 \text{ m}^3$

Total concrete volume in second basement: $V_{total} = 1.05 \cdot 214 = 224.7 \text{ m}^3$

First floor :

$$V = 0.5 \cdot 0.35 \cdot 6 = 1.05 \text{ m}^3$$

Total concrete volume in first floor: $V_{total} = 1.05 \cdot 170 = 178.5 \text{ m}^3$

Second floor :

 $V = 0.5 \cdot 0.35 \cdot 6 = 1.05 \text{ m}^3$ Total concrete volume in second floor: $V_{\text{total}} = 1.05 \cdot 160 = 168 \text{ m}^3$

Third floor :

 $V = 0.5v0.35 \cdot 6 = 1.05 \text{ m}^3$ Total concrete volume in third floor: $V_{\text{total}} = 1.05 \cdot 160 = 168 \text{ m}^3$

Fourth floor:

 $V = 0.5 \cdot 0.35 \cdot 6 = 1.05 \text{ m}^3$ Total concrete volume in fourth floor: $V_{\text{total}} = 1.05 \cdot 114 = 120 \text{ m}^3$

Slabs:	
First basement	
	$V = 0.2 \cdot 72 \cdot 114 - (324) = 1318 \text{ m}^3$
Second basement:	
	$V = 0.2 \cdot 72 \cdot 114 - (324) = 1318 \text{ m}^3$
First floor:	
	$V = 0.2 \cdot 6 \cdot 6 = 7.2 \text{ m}3$
	V _{total} = $7.2 \cdot 144 = 1036.8 \text{ m}^3$
Second floor	
	$V = 0.2.6.6 = 7.2 \text{ m}^3$
	$V_{-1} = 72.120 = 864 \text{ m}^3$
Third floor	v total 7.2 120 004 m
Third Hoor.	$V = 0.2 \cdot 6 \cdot 6 = 7.2 \text{ m}^3$
	$V_{\text{rest}} = 72.120 = 864 \text{ m}^3$
Fourth floor:	
	V = 0.2.6.6 = 7.2 m3
	$V_{total} = 7.2 \cdot 87 = 626.4 \text{ m}^3$

4.7 Set of machines and equipment for concrete works

The number of machines and vehicles included in the set must provide the required intensity of the concrete work. Hours or shift intensity of concrete mix laying

can be given by the head of the Course Project. If neither the intensity nor the duration of the concrete works are not set, then as the intensity of the concrete should be accepted a performance of leading concrete paver. The operational performance of the crane for the supply of concrete in bins is determined from the condition of performing by the crane an 8 - 10 cycles per hour.

To installation of the formwork and reinforcement, feeding of concrete mix into the bins to be used self-propelled jib cranes – automobile, at a special chassis of motor type, pneumatic and caterpillar-mounted. When choosing a brand, it is necessary to state the required crane cargo characteristics – capacity, radius and hook height.

The required load capacity of the crane is the heaviest weight of the lifted load (formwork block–form, reinforcing mesh or frame, bin with concrete mix). Weight of bin with concrete mix M:

 $M=Me+E\cdot\gamma dc,t,$ (4.1)

where Me - mass of the empty bunker, (annex.1, table. 18) t;

E – hopper capacity, (annex.1, table 18) m3;

 $\gamma dc - 2,4 \text{ t/m}3$ – density of concrete mix.

Technical characteristics of bunkers for supply of concrete mix cranes: (BP–1,6)

Capacity, m3) = 1.6 m³ Loading capacity, t) = 4,0 Weight, kg) = 435 kg Length = 3970 mm Width = 1472mm Heigh = 940mm Me = 435kg E = 4 $\gamma dc = 2,4$ t/m³

M=435+4·2.4=444.5

Features of rotated bins and not rotated bins for feeding the concrete mix by valves are given in (annex N_{21} . tab. 18).

The required radius and height of crane hook lifting is determined graphically through the drawn works schemes on a scale.

Selection of crane brand is made by comparing the required parameters of the crane with cargo characteristics of self–propelled jib cranes. Generally, to perform formwork and reinforcement works, supply concrete mix is used one crane.

Choosing a concrete pump as a paving machine, should take into account the relative placement of the concrete pump and concreted foundations – the desired range. Specifications for the concrete truck are given in (annex No1 tab. 19). The (ABN 75/32) concrete pump with the following characteristics was selected:

Technical productivity, m3/h: 75

Quantity of sections of an arrow, piece: 3

Inner diameter of a concrete delivery, mm: 125 The greatest range of giving of a concrete mixture: 28 (Basic car: (KaMAZ 53212)) The car sizes in transport situation, m Length: 10,3 Width: 2,5 Height: 3,8 For transportation of concrete mix should select the brand of mixer truck (annex

 N_{21} tab. 20). The amount of concrete mix, hauled in mixer trucks must comply with concreting intensity.

Technical characteristics of auto concrete mixer: (SB-159b) Geometrical volume of a mixing drum, m3: 75 Capacity of a mixing drum on a concrete mixture, m3): 3 Basic car : (KaMAZ 54111) (The car sizes in transport situation, m): (length = 7,6 Width = 2,5 Heigh = 3,6

With a relatively low intensity of concreting by the crane to be adopted a mixer truck $4\div 5$, m during the concreting by concrete pump $-5\div 7$, m.

4.8 Life safety and labor protection

General requirements

Life safety and labor protection is a complex of legal, technical and sanitary measures aimed at creating safe and healthy working conditions. They are carried out in strict compliance with the law.

During the installation of finishing works, such activities were provided as:

in order to dry the premises in production, air heaters are used that operate only on liquid fuel;

during the manufacture of paint substances at the construction site, it is necessary to use premises equipped with ventilation, which do not allow exceeding the maximum permissible concentration of harmful substances in the air;

it is forbidden to prepare paint compositions in violation of the instructions of the paint manufacturer, as well as to use solvents without a special certificate indicating the nature of the harmful substances.

Violation of the set of rules for the operation of electrical installations, touching unprepared to live wires, contact with non-live parts that are energized due to erroneously designed insulation or grounding devices, leads to the following:

The provision and guarantee of fire safety at the construction site is carried out in accordance with safety regulations. Fire prevention measures, carried out as after briefing for employees, are developed in conjunction with the construction organization project and the work organization project. These measures are aimed at preventing the occurrence of a fire, limiting its spread, creating conditions for the successful evacuation of people and material assets from the danger zone, providing conditions for localizing and extinguishing a fire.

Safety Measures During Concrete Construction:

1 Wear Protective Clothing

Fresh concrete poses a risk and then, it's important to wear protective gear while working. Proper Eye Protection, Long Sleeved Shirt, Waterproof Gloves &Full Length Trousers are essential gears for the task site. Don't forget to clean off the cement and flunk with clean water immediately after work.

2. Use Construction Machinery Properly

Rotating machinery is that the major explanation for the accidents at construction site. If not employed in the right manner, then it can pose risky hazards. confirm that experts are present to handle the equipments like hydraulic concrete pumps, belt conveyors and then on.

3. Follow Correct Construction Practices

Concrete Installation and Finishes are straightforward construction process. However some practices contribute to different risks. a number of the tasks require cranes to lift up concrete buckets, concrete panels and precast concrete. Reinforcement construction requires use of heavy materials then, it's essential to follow safety measures all the days.

4. Consider Jobsite Conditions

Confined or Cramped Areas at Jobsite can affect the operations and safety. It includes various locations that are confined to hazardous material, utility wires, traffic so on. So, it's better to grasp proper site conditions and alert workers to be more careful.

Prevention is that the true precaution when engaged on concrete construction sites. Identifying potential hazards and fixing proper preventive measures reduces work related injuries. Knowledge of the Hazard is that the initiative of defense against injury. So, it's essential to rent a reputable company for your construction projects.

Maple Concrete Pumping Company offer, top quality and well equipped concrete business, serving in Toronto, Ontario since a few years. Our experts take all the responsibility of the project and provide you with exceptional outcomes.

5 Economic part

The construction industry is no exception in the financial component of the macroeconomics of both the Republic of Kazakhstan and absolutely any state. All processes and stages of construction are accompanied by costs that need to be predicted, planned, calculated and recorded. In this regard, the preparation of an estimate calculation takes an important position in the design of construction projects. The question of profitability is undoubtedly an acute issue for each structure and structure being erected, but it is important to take into account the purpose of the building. This project is an Hostel building, that is, an Hotel with built-in underground parking in Semey city of the project the issue of profitability will not be considered. The initial data for the estimated calculation are taken on the basis of the calculations performed. The estimate was calculated on the modern and accessible resource Estimates of the Republic of Kazakhstan. All prices for work and material costs, as well as for machines and mechanisms are current for 2020. Direct costs include the labor costs of contractors, the operation of special equipment and the supply of materials, overhead costs are added depending on the type of work performed, the estimated profit is also reflected in an amount of not more than 6% and value added tax of 12%. The total building area is 10368 m², based on which we will determine the cost per square meter of future construction products. The main sections of the project are reflected in local estimates according to the type of work. The local estimate for earthwork includes the development of a trench with subsequent compaction of the base, after the erection of the basement floors, the sinuses of the pit are backfilled with soil. The local estimate for Foundations includes work on the arrangement of concrete preparation for the foundation). The local estimate for the building frame consists of such works as the installation of monolithic reinforced concrete structures of columns, walls, diaphragms and stiffening cores, floor slabs and coverings. The local estimate for filling openings reflects window glazing and the installation of window sills, the device of doorways. Interior decoration and flooring reflects the work on the decoration of walls and ceilings with gypsum-based plaster compounds and their coloring, as well as work on the installation of floors from concrete screeds, followed by coating with decorative tiles or linoleum. The local estimate for the roofing was made according to the roofing pie according to the project in the form of a vapor barrier made of a vapor barrier film, insulation with Euro plex plates, a waterproofing device made of needlepunched textiles. The local estimate for Elevators and lifting equipment includes the costs for the device of lift shafts and for the installation and commissioning of lift equipment with a different number of stops. The total cost of general construction and installation works is 850,293,601.56 thousand tenge, including VAT. This amount does not include the cost of laying 37 utilities. The cost per 1 m 2 of construction products is 196.6 thousand tenge. All types of estimate calculations are presented in Appendix В

CONCLUSION

In this work, a project was created for the building of a hostel in Semey. Modern materials were selected for the architectural and constructive solution, the foundation, walls and floor structures. The master plan has been developed taking into account the amenities and all safety measures.

Each section of the work has its own solution.

In the architectural and construction section, solutions are substantiated for the general plan of the object, for the space-planning and design solutions, for engineering equipment. In this section, the heat engineering calculation of the outer walls and the covering slab was made.

In the design and design section, the design scheme of one block was determined, the collection of loads was compiled and the forces in the supporting structures were determined using the PC "Etabs 19.02".

In the section of construction production technology, methods of construction production are determined, a construction plan has been developed, as well as a calendar schedule. The accepted methods of production of work provide for comprehensive mechanization and the use of high-performance construction machines that ensure high quality of work and labor safety, flow and continuity of the construction process.

The rationality of the choice of production methods, complex mechanization, technological sequence and the relationship of certain types of work is reflected in technical and economic indicators.

The section of the economy includes the data of the consolidated estimate of the cost of construction.

Life safety and labor protection is a complex of legal, technical and sanitary measures aimed at creating safe and healthy working conditions. They are carried out in strict compliance with the law.

LIST OF USED LITERATURE

1. EUROCODE 0 – EN 1990 Basis of Structural Design

2. EUROCODE 1 - EN 1991 Actions on Structure

3. EUROCODE 2 . EN 1992 Design of Concrete structure

4. EUROCODE 7 . EN 1997 Geotechnical design,

5. EUROCODE 8 .EN 1998 Design of structures for earthquake resistance

6. SP RK 2.04-03-2002 Construction heat engineering, Construction

7. Dimensions and rules of construction of the RK. SNiP RK 2.04-01-2016.

8. SP PK 01-01-3.1 (4.1)-2017 Loads and effects on buildings of snow and wind

9. SP PK 02-01-1.1-2011 - Reinforced concrete structures design

10. SP PK 02-01-1.4-2011 - Design of monolithic structures Construction norms and rules. SP 2.01.07-85 *. Loads and effects. -Enter. 1987-01-01. M .: Gosstroy of Russia, GUP CPP, 2003, p betrayal. - 60s.

11. Dimensions and rules of construction of the RK. SP RK 2.03-30-2006. Construction in seismic areas. - Most. 2018-01-07. -Semey: Ministry of Industry and New Technologies of the Republic of Kazak Agency for Construction and Housing, 2006. -80p.

12. Dimensions and rules of construction of the RK. SP RK 3.01-01-

2008. Urban development. Urban and rural construction design. - Most. 2017-01-06. Semey: Agency for Construction and Housing of the Ministry of Industry and New Technologies of the Republic of Kazakhstan,

13. Dimensions and rules of construction of the RK. SP RK 3.02.02-2001. Public buildings and structures. - Astana: Construction works of the Ministry of Industry and New Technologies of the Republic o Committee on, 2001. -84p.

14. Dimensions and rules of construction of the RK. SNiP RK 3.02-20-

2004. Cultural and entertainment institutions. 2005-01-01.- Astana: Ministry of Industry and New Technologies of the Republic o Committee for Construction

and

Housing, 2005. -44p.

15. Dimensions and rules of construction of the RK. SP RK Sh.2.6-3-

2000. Floors. - Semey: Committee for Construction of the Ministry of Industry and New Technologies of the Republic of Kazakh 28p.

16. Dimensions and rules of construction of the RK. SP RK 3.02-06-

2009. Roofs and roofs. - Astana: Construction and Housing Affairs of the Ministry of

Industry and New Technologies of the Republic o Agency, 2009. -67p.

17. Dimensions and rules of construction of the RK. SP RK 2.02-05-

2002. Fire safety of buildings and structures. - Astana: Construction of the Ministry

of Industry and New Technologies of the Republic and Agency for Housing and 44 communal Services, 2009. –36p.

18. Construction dimensions and rules of the RK. SNiP RK 4.01-02-2011. Water supply. External networks and buildings. - Astana: Ministry of Industry and New Technologies of the Republic of Kazakhs Committee on Construction, 2001. –109p.

19. Dimensions and rules of construction of the RK. SP RK 4.01-41-2006.

20. Internal water supply and sewerage of buildings. 2017-06-01.-Construction and Housing of the Ministry of Industry and New

21. https://g.co/kgs/UbSqTG

https://books.google.com/books/about/Civil_Engineering_Reference_Book.html?id=

22. https://books.google.com/books/about/Civil_Engineering_Reference_

23. Simplified Engineering for Architects and Builders James

Ambrose, Patrick Tripeny 2016

Appendixes

Appendix A

	si or ounding areas	
No	Name of area	Area (m ²)
1	Living room	32
2	Living room	20
3	Living room	41
4	WC	4
5	Corridor	1440
6	Stairs	36
7	Lift	4
8	Reception for residents	20
9	Cafeteria	288
10	Changing room (gym)	60
11	Mini market	120
12	Gym	1010
13	Warehouse	1000
14	Conference hall	324
15	Cooking room	380
16	Warehouse	500
17	Top roof cafeteria	648
18	Top roof cafeteria	540
19	corridor	35

Table A.1 - Explanation of building areas

Table A.2 – Doors and windows dimensions

Name	No	Width, m	Height, m
Doors	a	900	2200
	b	800	2100
	с	2200	2200
	d	3000	2800
	e	800	2000
	f	2800	2200
Windows	w1	3000	2500
	w2	2000	2000

Application B

B.1 Structure Data

This chapter provides model geometry information, including items such as story levels, point coordinates, and element connectivity.

B.1.1 Story Data

Table B.1 - Story Definitions

Tower	Name	Height m	Master Story	Similar To	Splice Story	Color
T1	Story6	3.2	No	None	No	Green
T1	Story5	3.2	Yes	None	No	Cyan
T1	Story4	3.2	No	Story5	No	Red
T1	Story3	3.2	No	Story5	No	Magenta
T1	Story2	3.8	Yes	None	No	Yellow
T1	Story1	2.8	No	Story2	No	Gray8Dark

Table B.2 - Grid Definitions - General

Tower	Name	Туре	Ux m	Uy m	Rz deg	Story Range	Bubble Size mm	Color
T1	G1	Cartesian	0	0	0	Default	1250	Grav6

Table B.2 - Grid Definitions - Grid Lines

Name	Grid Line Type	ID	Ordinate m	Bubble Location	Visible
G1	X (Cartesian)	1	0	End	Yes
G1	X (Cartesian)	2	6	End	Yes
G1	X (Cartesian)	3	10	End	Yes
G1	X (Cartesian)	4	11	End	Yes
G1	X (Cartesian)	5	12	End	Yes
G1	X (Cartesian)	6	13	End	Yes
G1	X (Cartesian)	7	18	End	Yes
G1	X (Cartesian)	8	24	End	Yes
G1	X (Cartesian)	9	30	End	Yes
G1	X (Cartesian)	10	36	End	Yes
G1	X (Cartesian)	11	42	End	Yes
G1	X (Cartesian)	12	43.5	End	Yes
G1	X (Cartesian)	13	48	End	Yes
G1	X (Cartesian)	14	54	End	Yes
G1	X (Cartesian)	15	60	End	Yes
G1	X (Cartesian)	16	66	End	Yes
G1	X (Cartesian)	17	72	End	Yes
G1	X (Cartesian)	18	78	End	Yes
G1	X (Cartesian)	19	84	End	Yes
G1	X (Cartesian)	20	90	End	Yes
G1	X (Cartesian)	21	96	End	Yes
G1	X (Cartesian)	22	102	End	Yes
G1	X (Cartesian)	23	108	End	Yes
G1	X (Cartesian)	24	114	End	Yes
G1	X (Cartesian)	25	120	End	Yes

Name	Grid Line Type	ID	Ordinate m	Bubble Location	Visible
G1	X (Cartesian)	26	126	End	Yes
G1	X (Cartesian)	27	129	End	Yes
G1	X (Cartesian)	28	132	End	Yes
G1	X (Cartesian)	29	138	End	Yes
G1	X (Cartesian)	30	144	End	Yes
G1	Y (Cartesian)	А	0	Start	Yes
G1	Y (Cartesian)	В	6	Start	Yes
G1	Y (Cartesian)	С	12	Start	Yes
G1	Y (Cartesian)	D	18	Start	Yes
G1	Y (Cartesian)	Е	24	Start	Yes
G1	Y (Cartesian)	F	30	Start	Yes
G1	Y (Cartesian)	G	36	Start	Yes
G1	Y (Cartesian)	Н	42	Start	Yes
G1	Y (Cartesian)	Ι	48	Start	Yes
G1	Y (Cartesian)	J	50.925	Start	Yes
G1	Y (Cartesian)	Κ	54	Start	Yes
G1	Y (Cartesian)	L	56	Start	Yes
G1	Y (Cartesian)	М	58	Start	Yes
G1	Y (Cartesian)	Ν	60	Start	Yes
G1	Y (Cartesian)	0	66	Start	Yes
G1	Y (Cartesian)	Р	72	Start	Yes
G1	Y (Cartesian)	Q	75	Start	Yes
G1	Y (Cartesian)	R	78	Start	Yes
G1	Y (Cartesian)	S	84	Start	Yes
G1	Y (Cartesian)	Т	90	Start	Yes
G1	Y (Cartesian)	U	96	Start	Yes
G1	Y (Cartesian)	W	102	Start	Yes

B.2 Loads

This chapter provides loading information as applied to the model.

B.2.1 Load Patterns

Table B.3 - Load Pattern Definitions

Name	Is Auto Load	Туре	Self Weight Multiplier	Auto Load
~ChineseX	Yes	Other	0	
~ChineseY	Yes	Other	0	
~LLRF	Yes	Other	0	
Dead	No	Dead	1	
Live	No	Live	0	
snow	No	Snow	0	
wind	No	Wind	0	EUROCODE1 2005

Appendix C

Figure C.1 – Axial force (dead load0

Figure C.2 – shear force diagram (dead load)

Figure C.3 – axial force diagram (dead load)

Figure C.4 – shear force diagram (snow load)

Figure C.6 – shear force (wind load)

3-d 0% 0% 0d 5 6d ≜ 🐺 🗹 🗊 • 🗊 • 🗊 ₩ ЩЩ й 🖗 ≒ প 📓 🗟 🚺 I • 🗊 • ऱ • Ц • ∞ • С • – •

Design Options Tools Help

3-D View Torsion Diagram (wind) [tonf-m]

Figure C.7 – torsion diagram (wind load)

Figure C.8 – torsion

Figure C.10 - diagram of stress in 2 story

Figure C.11 -strain diagram

Figure C.12 – max force diagram

Figure C.13 – max force diagram

Figure C.14 – max moment diagram

Figure C.15 – max force (snow load)

Figure C.16 – stress (snow load)

Local Estimate

(Local estimate calculation)

Estimated cost	214628.137	thousand tenge
Standard labor intensity	200388.99	person-h
Estimated wages	48157.238	thousand tenge

Compiled in 2001

				Unit cost	, tenge	Total cos	st, tenge		Labor costs -	non hours
Nn/n	Code and item	Name of works and costs,	Number	Total	Expl. machines	Total	Expl. machines	Overheads	construction	n workers
мр/р	the	unit of measure	Number	Salary of	incl. Salary	Salary of	incl. Salary of	tenge	workers servir	ng machino
	standard			workers	of drivers	workers	drivers	%	for one.	Total
1	2	3	4	~ 5	6	7	8	.9	10	11
				<u>SECTIO</u>	<u>N 1. Ear</u>	<u>thworks</u>				
1	E11-01- 03-072-02	Layout with 340 kW (450 hp) bulldozers								
	00 072 02		23,452.12	7.38	7.38	173,076.65	173,076.65	12,461.52	-	
		m2		-	0.74	-	17,307.66	/2.00	0.41	9,615.
2	E11-01- 01-001-04	Excavation of the soil of the 2nd group into the dump by "Dragline" single-bucket electric walking excavators when working on hydropower construction, with a bucket with a capacity of 15 m ³	19,862.00	205 32	204 18	4 078 065 84	4 055 423 16	102 392 58	1 36	27 012
		15 III5 m3		3.64	3.52	72.297.68	69.914.24	72.00	0.94	10.670
5	010104- 0603	and pits with bulldozers with a capacity of 79 (108) kW (hp), when moving soils of the 1st group up to 5 m	1,230.00	56.43	56.43	69.408.90	69.408.90	3.701.81	_	
		m3		-	4.18	-	5,141,40	72.00	0.66	811.
		TOTAL SECTION 1	Tenge			4,320,551.39	4,297,908.71			27,012.
		DIRECT COSTS	Tenge			72,297.68	92,363.30			29,097.
	The cost of	general construction works	Tenge			4,320,551.39				
	- Materials -		Tenge							
	Total salary	r -	Tenge			164,660.98				
	The cost of	materials and structures -	Tenge							
		Overhead costs -	Tenge					118,555.91		
		Normative labor intensity in N.R	person-h							2,805.
		Estimated wages in N.R	Tenge			17,783.39				
		Irregular and unforeseen costs -	Tenge			266,346.44				
	TOTAL, TI constructio	ne cost of general n works -	Tenge			4,705,453.73				
		Standard labor intensity -	person-h							56,109.
		Estimated salary -	Tenge			182,444.37				
		TOTAL SECTION 1	Tenge			4,705,453,73				

		Standard labor intensity -	person-h							56,109.77
		Estimated salary -	Tenge			182,444.37				
	1									
			<u>S</u>	ECTION	N 2. Fou	<u>ndations</u>				
5	E11- 060101- 0101	Concrete preparation device, concrete class B30	155.50	7,006.11	1,346.00	1,089,450.11	209,303.00	98,736.53	1.43	222.37
		m3		685.20	12.56	106,548.60	1,953.08	91.00	0.19	29.55
~	E11- 060101- 0113	Installation of flat reinforced concrete foundation slabs, class B30 concrete	10,850.20	4,480.31	3,408.30	48,612,259.56	36,980,736.66	2,448,376.93	4.17	45,245.33
		m3		220.66	27.31	2,394,205.13	296,318.96	91.00	0.17	1,844.53
6	E11- 080101- 0307	Side coating bituminous waterproofing in 2 layers on the leveled surface of rubble masonry brick, concrete walls, foundations m2	41,210.00	365.30 21.20	27.01 0.35	15,054,013.00 873,652.00	1,113,082.10 14,423.50	825,910.22 93.00	0.19	7,829.90 26.29
7	S121-	Reinforcing blanks, not								
	050301- 3202	assembled into frames and meshes: steel of periodic profile of class A-III, d 12 mm	14.20	67,412.88	_	957,262.94	_	_	_	-
		t		-	-	-	-	-	-	-
8	8121- 050301- 3001	Reinforcement blanks not assembled into frames and meshes: smooth steel of class A-I, d 6 mm	6.73	65,745.09	_	442,300.09	_	_	_	
			T	-		-				
		DIRECT COSTS	Tenge			3 374 405 73	38,303,121.76			53,297.60
	The cost o	f general construction works	Tenge			64,755,722.67	512,055.54			1,700.57
	-					1 200 5/2 02				
	Total salar	- 	Tenge			1,399,503.03				
	Total sala	Overhead costs -	Tenge			5,007,101.27		3.373.023.67		
		Normative labor intensity	person-h					-,		2,759.90
	_	in N.R								
		Estimated wages in N.K	Tenge			505,953.55 4 171 608 56				
		costs -	Tenge			4,171,090.50				
	TOTAL, T	he cost of general on works -	Tenge			73,700,007.93				
		Standard labor intensity -	person-h							55,197.97
		Estimated salary -	Tenge			4,193,054.82				
		TOTAL SECTION 2	Tenge			73,700,007.93				
		Standard labor intensity -	person-h							55,197.97
		Estimated salary -	Tenge			4,193,054.82				
				SECTIO		Jumps				
	E11-	Arrangement of columns		<u>SEC IR</u>	<u>JN 3. C(</u>	<u>//u////5</u>				
9	060501- 0201	of civil buildings in metal formwork, concrete class B25	210.24	23,012.14	13,416.07	4,837,957.40	2,820,527.48	1,705,639.50	13.55	2,848.68
		metal formwork, concrete class B30. m3		7,436.23	1,479.17	1,563,355.81	310,973.30	91.00	5.07	1,065.89
10	\$121- 050301- 3203	Reinforcement blanks not assembled into frames and meshes: steel of periodic profile of class A-III, d 25-28 mm	25.24	56,070.27		1,415,213.53	-	-		
- 11	\$121- 050301- 3202	Reinforcing blanks, not assembled into frames and meshes: steel of a periodic profile of class A-III, d 16-18 mm	8.79	67,412.88	-	592,235.66	-			
12	\$121- 050301- 3001	Reinforcement blanks not assembled into frames and meshes: smooth steel of class A-I,		68 745 00		252 (40.22				
		uðmm	5.30	03,/43.09	-	352,040.23	-	-	-	-

	1	TOTAL SECTION 3	Tenge			7,198,046.82	2,820,527.48			2,848.6
		DIRECT COSTS	Tenge			1,563,355.81	310,973.30			1,065.8
	The cost o	f general construction works	Tenge			4,837,957.40				
	Materials -		Tenge			2,360,089.41				
	Total salar	y -	Tenge			1,874,329.12				
		Overhead costs -	Tenge					1,705,639.50		
		Normative labor intensity in N.R	person-h							195.7
		Estimated wages in N.R	Tenge			255,845.92				
		Irregular and unforeseen	Tenge			534,221.18				
	TOTAL, T	costs - he cost of general	Tenge			9,437,907.49				
	constructio	n works - Standard labor intensity	nerson h							3 01/ 5
		Estimated salary -	Tenge			2 130 175 04				3,714.3
		TOTAL SECTION 3	Tenge			9 437 907 49				
		Standard labor intensity -	nerson-h			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				3.914.5
		Estimated salary -	Tenge			2.130.175.04				5,714.5
		Estimated salary	Tenge			2,150,175.04				
				<u>SECTI</u>	ON 4. V	Walls				
13	E11-	Laying of brick exterior								
	080201- 0103	simple walls with a floor height of up to 4 m	7,100.23	4,875.72	812.62	34,618,733.42	5,769,788.90	13,384,259.86	4.90	34,791.1
		m3	,	1,820.44	206.49	12,925,522.29	1,466,154.98	93.00	0.41	2,911.0
^ ·	E11-	Laying of internal brick								
14	080201-	walls with a floor height of up to 4 m	1.550.00	3,745,55	259.44	5.805.603.89	402,132.00	2.525.802.17	4.25	6.587.5
	0107	m3	1,550.00	1,556.64	195.56	2.412.792.00	303,124,31	93.00	0.39	604.5
	E11-	Laying of partitions				2,112,752.00	505,12 1151			00112
15	080401- 0301	made of reinforced brick with a thickness of 1/4 brick at a floor height of								
		up to 4 m	25,410.23	1,248.11	181.80	31,714,762.17	4,619,579.81	15,791,050.22	1.39	35,320.2
		1112		037.92	30.30	16,209,693.92	769,929.97	95.00	0.03	762.3
		TOTAL SECTION 4 DIRECT COSTS	Tenge			72,139,099.47	10,791,500.72			76,698.8
			Tenge			31,548,008.21	2,539,209.26			4,277.9
	The cost of	f general construction works	Tenge			72,139,099.47				
	Materials -		Tenge							
	Total salar	y -	Tenge			34,087,217.47				
		Overhead costs -	Tenge					31,701,112.25		
		Normative labor intensity in N.R	person-h							4,048.8
		Estimated wages in N.R	Tenge			4,755,166.84				
		Irregular and unforeseen costs -	Tenge			6,230,412.70				
	TOTAL, T constructio	he cost of general on works -	Tenge			110,070,624.43				
		Standard labor intensity -	person-h							80,976.7
		Estimated salary -	Tenge			38,842,384.31				
		TOTAL SECTION 4	Tenge			110,070,624.43				
		Standard labor intensity -	person-h							80,976.7
		Estimated salary -	Tenge			38,842,384.31				
		1		<u>SECTIC</u>	<u>)N 5. 0</u>	<u>verlap</u>				
16	E11- 060801- 0105	Arrangement of ribbed slabs at a height of more than 6 m from the support area, concrete		22.000.10	1 53 4 00	0 101 272 01	772 794 99		11.05	2 551 5
		class B30	341.32	23,999.10	1,534.00	8,191,372.81	523,584.88	2,077,676.65	0.36	3,771.5
17	\$121	Reinforcement blanks		0,000,71	120.30	2,242,100.36	41,060.80	>1.00	0.00	122.8
1/	050301- 3202	not assembled into frames and meshes: steel								
		a periodic profile of	66.21	67,412.88	-	4,463,676.65	-	-	-	
		class A-III, d 16 mm	00.41							
		class A-III, d 16 mm	00121	-	-	-	-	-	-	

	3001	frames and meshes: smooth steel of class A-I, d 6 mm								
		t		-	-	-	-	-	-	
		TOTAL SECTION 5 DIRECT COSTS	Tenge Tenge			13,005,142.07 2,242,100.36	523,584.88 41,060.80			3,771.59
	The cost o	f general construction works	Tenge			8,191,372.81				
	Materials -		Tenge			4,813,769.25				
	Total salar	y -	Tenge			2,283,161.16				
		Overhead costs -	Tenge					2,077,676.65		
		Normative labor intensity in N.R	person-h							194.72
		Estimated wages in N.R	Tenge			311,651.50				
		Irregular and unforeseen	Tenge			904,969.12				
	TOTAL, T constructio	he cost of general	Tenge			15,987,787.84				
		Standard labor intensity -	person-h							3,894.46
		Estimated salary -	Tenge			2,594,812.66				
		TOTAL SECTION 5	Tenge			15,987,787.84				
		Standard labor intensity -	person-h							3,894.46
		Estimated salary -	Tenge			2,594,812.66				
				SECTI	ON 6	Roof				
	E11-	Roofing made of		BECH		<u>11001</u>				
19	0701	cement sheets, ordinary profile on a wooden	505 12	740.54	47.01	440 075 17	28 120 25	141 202 04	0.42	246 50
		lathing with its device	587.13	252.80	47.91	440,075.17	28,129.25	92.00	0.42	240.59
	E11-	Installation of pitched				140,425.71	5,201.23			11./4
20	120101- 0102	roofs from three layers of roofing roll materials on bitumen mastic with a protective layer of gravel on bitumen mastic	154.73	464.44	41.39	71,863.73	6,404.24	31,910.02	0.23	35.59
		m2		216.93	7.23	33,566.01	1,118.80	92.00	0.01	1.55
		TOTAL SECTION 6	Tenge			511,938.90	34,533.49			282.18
		DIRECT COSTS	Tenge			181,991.72	6,380.09			13.29
	The cost o -	f general construction works	Tenge			511,938.90				
	Materials -		Tenge							
	Total salar	y -	Tenge			188,371.80				
		Overhead costs -	Tenge					173,302.06		
		Normative labor intensity in N.R	person-h							14.77
		Estimated wages in N.R	Tenge			25,995.31				
		Irregular and unforeseen costs -	Tenge			41,114.46				
	TOTAL, T constructio	he cost of general on works -	Tenge			726,355.42				
		Standard labor intensity -	person-h							295.47
		Estimated salary -	Tenge			214,367.11				
		TOTAL SECTION 6	Tenge			726,355.42				
		Standard labor intensity -	person-h							295.47
		Estimated salary -	Tenge			214,367.11				
		TOTAL DIRECT	Tenge			163,330,064.34	56,771,177.03			163,911.22
		COSTS BY ESTIMATE:	Tenge			38,982,159.52	3,302,682.29			36,477.78
	The cost o	f general construction works	Tenge			154,756,642.64				
	Materials -		Tenge			8,573,421.70				
	Total salar	y -	Tenge			42,284,841.81				
		Overhead costs -	Tenge					39,149,310.04		
		Normative labor intensity in N.R	person-h							10,019.45
		Estimated wages in N.R	Tenge			5,872,396.51				
		Irregular and unforeseen	Tenge			12,148,762.46				
	TOTAL, T	he cost of general	Tenge			214,628,136.85				

Standard labor intensity -	person-h		200,388.9
Estimated salary -	Tenge	48,157,238.32	
TOTAL BY AN ESTIMATE:	Tenge	214,628,136.85	
Standard labor intensity -	person-h		200,388.9
Estimated salary -	Tenge	48,157,238.32	
Recalculation of totals into prices as of 04/26/2020			
Total direct costs		163,330,064.34	
Overheads		39,149,310.04	
Irregular and unforeseen costs		12,148,762.46	
TOTAL in prices as of 01.01.2001		214,628,136.85	
Total with the cost of seniority		216,774,418.22	
Total with the cost of additional. leave		217,632,930.76	
Total in current prices as of 03.24.		744,304,623.21	
Total with taxes, fees and obligations. payments		759,190,715.68	
Value Added Tax (VAT)	12%	91,102,885.88	
Total with value added tax (VAT)		850,293,601.56	

Object name Hotel with built-in underground parking in Semey city

Local estimate calculation

Estimated cost	1429.92	thousand tenge
Standard labor intensity	1211	person-h
Estimated wages	30.04	thousand tenge

Compiled in 2001

				Unit co	st, tenge	Total cos	t, tenge		Labor co	osts, man-
Nn/n	Code and item number	Name of works and costs, unit of	Number	Total	Expl. machines	Total	Expl. machines	Overheads	ho constructi	urs, on workers
прур	of the standard	measure	number	Salary of construction	incl. Salary of drivers	Salary of construction	incl. Salary of drivers	tenge	worker mac	s serving hines
				workers		workers		%	for one.	Total
1	2	3	4		6	7	8	9	10	11
			SEC	TION 1 F	Quipmen	t				
1	Ts0110-350-	Video control device				_				
1	23		2	480.00	9.20	960	eighteen		2.00	four
		РС		425.00	4.50	850	nine	101	0.03	0.06
2	SPRICE	Video recorder NVR MS-N8032 Hikvision	one	65452.21	_	65452	_	_	_	-
		PC		-	-	-	-	-	-	-
3	SPRICE	Monitor 24 for video surveillance systems 243V5LSB5 / -01	0.00	15468 51	_	15469				_
		РС	one	-	-	-			_	_
4	SPRICE	Day / Night IP Dome Camera DS-2CD2312-I Hikvision								
			eleven	28254.58	-	310800	-	-	-	-
		PC		-	-	-	-	-	-	-
5	SPRICE	Outdoor, waterproof (IP-67) video camera day / night DS- 2CD2T35FWD-15 Hikvision	12	18254.25	_	219051	-	_	_	_
		РС		-	-	-	-	-	-	-
6	Ts0110-669- 3	Facility signaling devices and devices; ultrasonic devices: power supply and control unit								
			23	3021.50	1.60	69495	37		5.00	115
		PC		936.00	-	21528	-	90	-	-
7	SPRICE	Redundant power supply 12V- 3A-17Ah Quant 50								
		РС	eleven	2510.25	-	27613	-	-	-	-
	SPRICE	Accumulator battery 7A / h								
0			eleven	932.83	-	10261	-	-	-	-
		PC		-	-	-	-	-	-	-
9	SPRICE	Uninterruptible Power Supply UPS SVC RTO-1.5K-LCD)								
			one	2541.25	-	2541	-	-	-	-

	-							Control cohinet	Ts0110-345-	
								Control cabinet		10
	38.00	101	148	7207	148.00	7207.00	one	PC	4	
	0.22	101	38	05/0	38.30	0570.00			ODDICE	
								600x800 mm glass front door black	SPRICE	11
	-	-	-	2001	-	2000.50	one	РС		
								Fan module 19 "	SPRICE	12
	-	-	-	4685	-	4685.25	one	РС		
								Power supply panel (8 sockets-	SPRICE	13
	-	-	-	3521	-	3520.98	one	220V) PC		
								Hard drive 6000 Gb	SPRICE	
	-	-	-	2578	-	2578.00	one	HDWE160EZSTA Toshiba	STRICE	14
	-	-	-	-	-	-		PU	SDDICE	
				45014		45214.20		bGS-1510-28P / AIA D-Link switch	SPRICE	15
	-	-	-	45214	-	45214.20	one	РС		
11/	Ira	Ira	202	796947 66			Tanga	TOTAL SECTION 1 DIDECT		
119 119	ке	ке	203 47	78048 AA			Tenge	COSTS		
0.0			*/	20740.00			renge			
				786848			Tenge	stallation work -	The cost of in	2
				RC			Tenge		Materials -	2 3
				, AC			Tenge		Total salary -	
			28948	RC			Tenge	naterials and structures -	The cost of m	-+ ~~5
		292					Tenge	Overhead costs -		6
5.9							nerson-h	Normative labor intensity in N R		7
0.5.							person n	-		-
			44				Tenge	Estimated wages in N.R		8
			118071				Tenge	Irregular and unforeseen costs -		9
			905211				Tenge	cost of installation work -	TOTAL, the c	10
12							person-h	Standard labor intensity -		11
33							Tenge	Estimated salary -		12
			905211				Tenge	TOTAL SECTION 1		13
			125				person-h	Standard labor intensity -		14
			336				Tenge	Estimated salary -		15
					terials	ΓΙΟΝ 2 Μα	SEC'			
					<u>terrans</u>					16
								Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up	Ts0108-148-	
	0.40				• • •			Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg	Ts0108-148- 1	
elever	0.10	95	223	3413	2.10	32.20	106	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg	Ts0108-148- 1	
elever	0.10	95	223 53	3413 2650	2.10 0.50	32.20 25.00	106	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg M Power cable IURBII 2x0 75	Ts0108-148- 1	17
elevei	0.10	95	223 53	3413 2650 4525	2.10	32.20 25.00	106	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg M Power cable ШВВП 2x0.75	Ts0108-148- 1 SPRICE	17
elever	0.10	95	223 53 -	3413 2650 4525	2.10 0.50 	32.20 25.00 52.62	106 86	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg M Power cable ШВВП 2x0.75 M	Ts0108-148- 1 SPRICE	17
elever	0.10	95 - -	223 53 -	3413 2650 4525 -	2.10 0.50 -	32.20 25.00 52.62	106 86	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg M Power cable ШВВП 2x0.75 m Power cable VVG 3x1.5	SPRICE	17
eleve	0.10	95 	223 53 - -	3413 2650 4525 - 945	2.10 0.50 	32.20 25.00 52.62 - 47.24	106	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg M Power cable IIIBBII 2x0.75 M Power cable VVG 3x1.5	SPRICE	17
elever	0.10	95 - - - -	223 53 - - -	3413 2650 4525 - 945 -	2.10 0.50 _ _ _ _ _	32.20 25.00 52.62 - 47.24 -	106	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg M Power cable ШВВП 2x0.75 M Power cable VVG 3x1.5 M	SPRICE SPRICE	17 18
elever	0.10	95 - - - -	223 53 - - -	3413 2650 4525 - 945 -	2.10 0.50 - - -	32.20 25.00 52.62 - 47.24 -	106	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg m Power cable ШВВП 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0.5m) D L(5, D L(5, TT, TT))	SPRICE SPRICE SPRICE	17 18 . 19
elever	0.10	95 	223 53 - - - -	3413 2650 4525 - 945 -	2.10 0.50 - - -	32.20 25.00 52.62 - 47.24 -	106	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg M Power cable ШВВП 2x0.75 M Power cable VVG 3x1.5 M Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom	SPRICE SPRICE	17 18 19
elever	0.10	95 - - - -	223 53 - - - - -	3413 2650 4525 - 945 - 101	2.10 0.50 - - -	32.20 25.00 52.62 - 47.24 - 50.53	106 86 twenty	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg Power cable ШВВП 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom	SPRICE SPRICE SPRICE	17 18 . 19
elever	0.10	95	223 53 - - - - -	3413 2650 4525 - 945 - 101	2.10 0.50 - - - -	32.20 25.00 52.62 - 47.24 - 50.53 -	106 86 twenty 2	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg Power cable IIIBBII 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom PC	Ts0108-148-1 1 SPRICE SPRICE SPRICE	17 18 . 19
elever	0.10	95 - - - - - - - -	223 53 - - - - - -	3413 2650 4525 - 945 - 101 -	2.10 0.50 - - - -	32.20 25.00 52.62 - 47.24 - 50.53 -	106 86 twenty 2	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg Power cable ШВВП 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom PC Rj-45 connector	Ts0108-148-1 1 SPRICE SPRICE SPRICE SPRICE	17 18 19 20
elever	0.10	95 	223 53 - - - - - - - - - - - - -	3413 2650 4525 - 945 - 101 - 201	2.10 0.50 - - - - - -	32.20 25.00 52.62 - 47.24 - 50.53 - 5.58	106 86 twenty 2 36	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg m Power cable ШВВП 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom PC Rj-45 connector	Ts0108-148-1 SPRICE SPRICE SPRICE SPRICE	17 18 19 20
eleve	0.10	95 - - - - - - - - - -	223 53 - - - - - - - - - - - - - - - - - -	3413 2650 4525 - 945 - 101 - 201 -	2.10 0.50 - - - - - - - - - - - - - - - - - - -	32.20 25.00 52.62 - 47.24 - 50.53 - 50.53 - 5.58 -	106 86 twenty 2 36	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg m Power cable IIIBBII 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom PC Rj-45 connector	Ts0108-148-1 1 SPRICE SPRICE SPRICE SPRICE	17 18 19 20
eleve	0.10	95 	223 53 - - - - - - - - - - - - - - - - - -	3413 2650 4525 - 945 - 101 - 201 -	2.10 0.50	32.20 25.00 52.62 - 47.24 - 50.53 - 5.58 -	106 86 twenty 2 36	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg m Power cable IIIBBII 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom PC Rj-45 connector PC Prefabricated multicore cable with screen braiding, inner diameter up to 20 mm	Ts0108-148-11SPRICESPRICESPRICESPRICESPRICETs0111-108-7	17 18 19 20 21
	0.10	95 - - - - - - - -		3413 2650 4525 - 945 - 101 - 201 - 162696		32.20 25.00 52.62 - 47.24 - 50.53 - 5.58 - 135.58	106 86 twenty 2 36 1200	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg Power cable IIIBBII 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom PC Rj-45 connector PC Prefabricated multicore cable with screen braiding, inner diameter up to 20 mm	Ts0108-148-11SPRICESPRICESPRICESPRICESPRICETs0111-108-7	17 18 19 20 21
elever	0.10	95 		3413 2650 4525 - 945 - 101 - 201 - 162696 126900		32.20 25.00 52.62 - 47.24 - 50.53 - 55.58 - 135.58 105.75	106 86 twenty 2 36 1200	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg Power cable ШВВП 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom PC Rj-45 connector PC Prefabricated multicore cable with screen braiding, inner diameter up to 20 mm m	Ts0108-148-11SPRICESPRICESPRICESPRICESPRICETs0111-108-7	17 18 19 20 21
elever	0.10	95 		3413 2650 4525 - 945 - 101 - 201 - 162696 126900		32.20 25.00 52.62 - 47.24 - 50.53 - 55.58 - 135.58 105.75	106 86 twenty 2 36 1200	Cables up to 35 kV in laid pipes, blocks and boxes, weight 1 m up to 1 kg m Power cable ШВВП 2x0.75 m Power cable VVG 3x1.5 m Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom PC Rj-45 connector PC Prefabricated multicore cable with screen braiding, inner diameter up to 20 mm m Cable duct 20x16 RUVINYL	Ts0108-148-11SPRICESPRICESPRICESPRICETs0111-108-7SPRICE	17 18 19 20 21 21

		m		-	-	-	-	-	-	-
23	Ts0111-108- 9	Prefabricated multicore cable with screen braiding, inner								
		diameter up to 40 mm								
		m	twenty	399.77	-	7995 6885	-	00	1.90	38
24	SPRICE	Cable duct 60x40 RUVINII		544.25		0005		JU		
24	SINCE	Cable duct 00x40 KC VIIII	twonty	103.15	_	2063	_	_	_	_
		m	twenty	-	-	-	-	-	-	-
25	SPRICE	Nagel-dowel 60x40								
			2400	1.49	-	3576	-	-	-	-
		PC		-	-	-	-	-	-	-
26	Ts0108-148-	Cables up to 35 kV in laid pipes,								
		to 1 kg								
			1700	27.70	2.10	47090	3570		0.10	170
	approp	m		19.70	0.50	33490	850	95	-	
27	SPRICE	UTP cable, 100 Ohm, cat6, PVC UTP 2x4x0.53	1=00	41.54		70(52				
		m	1700	41.50	-	70652	-	-	-	
28	Ts0108-409-	Vinyl plastic pipes for installed								
	1	structures on walls and columns								
		mm								
			490	108.60	48.90	53214	23961		0.22	108
		m		39.60	12.20	19404	5978	95	0.07	34
29	SPRICE	Corrugated PVC pipe d 16 mm								
			400	10.25	-	4100	-	-	-	-
		m		-	-	-	-	-	-	-
30	SPRICE	PVC pipe d 16 mm								
		m	90	18.54	-	1669	-	-	-	-
21	SDDICE	Comore stand AVI 250		-	-	-		-		
51	SFRICE	Camera stanu Av L 550	-	8420 18		59004				
		РС		-	-	-		-	-	-
32	S143001-1	Concrete								
			0.875	_	-	-	-	_	-	-
		m3		-	-	-	-	-	-	-
33	E0101-14-1	Development of soil of the 1st								
		group with trench rotary excavators, with a trench width								
		of 1.2 m, a depth of up to 1.4 m								
		m2	22.5	14.25	12.48	321	281	07	-	0.22
			T		3.24	105005	7.5	31	0.01	0.23
1		TOTAL SECTION 2 DIRECT COSTS	Tenge			495005	28034	ke	ке	1034
			Tenge			189329	0954	_		35
2	The cost of it	actallation work	Tanga			405005				
3	Materials -		Tenge			493003 RC				
-	Total salary -		Tenge				189329			
	The cost of n	naterials and structures -	Tenge			RC				
6		Overhead costs -	Tenge					-		
7		Normative labor intensity in N.R.	person-h							52
		-								
8 :		Estimated wages in N.R	Tenge				-			
9	TOTAL	and unforeseen costs -	Tenge				29700			
10	TOTAL, the	Standard labor intensity	nerson h				524/05			100/
11		Estimated salary -	Tenge							20700
12		TOTAL SECTION 2	Tenge				524705			47700
14		Standard labor intensity -	person-h				1086			
14		Estimated salary -	Tenge				29700			
13	Recalculatio	on of totals into prices as of June								
16	14, 2018									
17	Total direct	costs	495005							
18	Overheads		-							
19	Irregular an	a unforeseen costs	29700			F0.4505				
20	TOTAL in p	orices as of 01.01.2001				524705				

21	Total with th	e cost of seniority		5247.05	529952.51			
22	Total with th	e cost of additional. leave		209882.18	739834.69			
23	Total at curr	ent prices as of 06/14/2018		2530234.64				
24	Total with ta payments	xes, fees and obligations.		50604.69	2580839.33			
25	Value Added	Tax (VAT)	12 %	309700.72				
26	Total with va	alue added tax (VAT)				2890540		

RESOURCE ESTIMATE

on the video surveillance system

Object name - Hotel with built-in underground parking in Semey city

Compileo	l in 2001								Teng
P/p No.	ABC resource code and	Resource cipher	Name of resources, equipment, structures, products and parts	unit of measurement	Number of units	Estimated unit price	Sale price per unit	Transport costs per unit	Cost (Total)
	attribute					justification	justification	Total	
1	2	3	4	5	6	7	8	9	10
			LABO	R RESOURC	ES				
1	1		Labor costs of construction workers	man-h	420	- 8000	-	-	3360000
2	3		Labor costs of machinists	man-h	25	- 10000	-	-	250,000
			TOTAL	Tenge				-	3610000
			CONSTRUCTION M.	ACHINES AN	D MECHAN	ISMS			
						OPERATION OF MACHINES		Salary of the Engineers	
3			Construction machines and mechanisms	machine-h		12000		10000	22000
			TOTAL	Tongo		-	-		22000
			IOTAL	Tenge					
			BUILDING MATER	IALS AND CO	NSTRUCTI	ONS			
	6300 M	\$143001-1	Concrete	m3	7903	-	_	_	
4	0500 101	5145001-1	concrete	mo	1905	-	-	-	
5		SPRICE	Video recorder NVR MS-N8032 Hikvision	РС	2	63564 -	-	-	63564
6		SPRICE	Camera stand AVL 350	РС	five		-	-	42145.9
7		SPRICE	PVC pipe d 16 mm	m	90	17.34	-	-	1560.0
						-	-	-	
8		SPRICE	Corrugated PVC pipe d 16 mm	m	900		-	-	37404
9		SPRICE	UTP cable, 100 Ohm, cat6, PVC UTP 2x4x0.53	m	600	41.56		-	24930
						-	-	-	
10		SPRICE	Nagel-dowel 60x40	РС	1620	- 1.49	-	-	2413.8
11		SPRICE	Cable duct 60x40 RUVINIL	m	twenty	103.15	-	-	2063
12		SPRICE	Cable duct 20x16 RUVINYL	m	560	50.23	-	-	28128.8
13		SPRICE	Rj-45 connector	РС	36	4.48	-	-	161.28
14		SPRICE	Patch cord UTP 5e category, (0,5m) RJ45- RJ-45 IT Telecom	РС	2	50.53			101.00
		CDDICE	Demon apple VVC 2 1 5			-	-	-	0.44
15		SPRICE	Power cable VVG 3x1.5	m	twenty	47.24	L		944.8

					-	-	-	
16	SPRICE	Power cable ШВВП 2x0.75	m	80	52.62 -	-	-	4209.6
17	SPRICE	DGS-1510-28P / A1A D-Link switch	PC	one	37034.64	-	-	37034.64
18	SPRICE	Hard drive, 6000 Gb HDWE160EZSTA Toshiba	PC	one	20830.27	-	-	20830.27
· 19	SPRICE	Power supply panel (8 sockets-220V)	PC	one	2538.38	-	-	2538.38
20	SPRICE	Fan module 19 "	PC	one	- 2882.21	-	-	2882.21
21	SPRICE	ITK Network cabinet 19 "N 6U 600x800 mm glass front door black	PC	one	10817.27 -		-	10817.27
22	SPRICE	Uninterruptible Power Supply UPS SVC RTO-1.5K-LCD)	PC	one	- 14850.57	-	-	14850.57
23	SPRICE	Accumulator battery 7A / h	PC	eleven	932.83	-	-	10261.13
24	SPRICE	Redundant power supply 12V-3A-17Ah Quant 50	PC	eleven	- 1835.77	-	-	20193.47
25	SPRICE	Outdoor, waterproof (IP-67) video camera day / night DS-2CD2T35FWD-I5 Hikvision	PC	12	- 13634.3		-	163611.6
26	SPRICE	Day / Night IP Dome Camera DS- 2CD2312-I Hikvision	PC	eleven	- 11202.96	-	-	123232.56
27	SPRICE	Monitor 24 for video surveillance systems 243V5LSB5 / -01	PC	eleven	- 13451.32	-	-	147964.52
	 	TOTAL	Tenge				-	761849.46

RESOURCE ESTIMATE

Estimated calculation of the cost of construction in the amount of 19s 7k

including refundable amounts: 15s7k

value added tax 18s7k

6112.29959182137 thousand tenge 8.51082903 thousand tenge 654.889241980861 thousand tenge

ESTIMATE CALCULATION OF THE COST OF CONSTRUCTION

Compiled in 2001

			Estima	ted cost, thousar	nd tenge	
P / p No.	No. of estimates and calculations	Name of chapters, objects, works and costs	construction and installation works	equipment, furniture and inventory	other costs	Total, thousand tenge
one	2	3	4	5	6	7
one	one	Hotel with Westron underground parking in Semey	1508.21	-	-	1508.21
2		Total = 1 line	1508.21	-	-	1508.21
3		Temporary buildings and structures 1.1% * 2 line 7 column	16.59031	-	-	16.59031
four		Return of materials from temporary buildings and structures 15% * 3s7k	2.4885465	-	-	2.4885465
five		Total = 3 lines	16.59031	-	-	16.59031
6		Total 2s + 5s	1524.80031	-	-	1524.80031
7		Additional costs during the performance of work in the winter $1.2\% * 6s7k$	18.29760372	-	-	18.29760372
eight		Seniority costs 1% * 6s7k			15.2480031	15.2480031
nine		Costs for additional vacations 0.4% * 6s7k			6.09920124	6.09920124
10		Total 7s + 8s + 9s	18.29760372		21.34720434	39.64480806
eleven		Total 6s + 10s	1543.09791372		21.34720434	1564.44511806
12		Including refundable amounts = 4s	2.4885465		-	2.4885465
13		Total according to the estimated calculation in base prices 2001 = 11s	1543.09791372		21.34720434	1564.44511806
fourteen		Total estimated at current prices in 2020. 13s * 3.42	5277.3948649224		73.0074388428	5350.4023037652
fifteen		Including refundable amounts in current prices 12s7k * 3.42	8.51082903			8.51082903
sixteen		Taxes, fees, mandatory payments, 2% * 14s7k			107.008046075304	107.008046075304
17		Estimated cost at the current price level 14s + 16s	5277.3948649224		180.015484918104	5457.4103498405
eighteen		VAT (12%) * 17s7k			654.889241980861	654.889241980861
nineteen		Construction cost 17s + 18s	5277.3948649224		834.904726898965	6112.29959182137

Construction site name : Hotel with built-in underground parking in Semey city

Estimated cost	1508.21	thousand tenge
Standard labor intensity	1.211	thousand people hour
Estimated salary	29	thousand tenge

Compiled in 2001

			E	stimated cost, th	nousand tenge				
P / p No.	No. of estimates and calculations	Name of works and costs	construction and installation works	equipment, furniture and inventory	other costs	Total	Normative labor intensity, thousand people hour	Estimated salary, thousand tenge	Indicators of a unit cost, thousand tenge
one	2	3	four	five	6	7	eight	nine	10
	one	Installation work	1508.21			1508.21	1.211	29	
		Total	1098.193			1508.21	1.211	29	

General plan

Wind rose

					KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP					
Chan	Sheet	Nedoc	Sian	Date	Hotel with built-in underground parking in Semey city					
Head	of Dep	Kozyukova .N.V				stage	Sheet	Sheets		
Supe	ervisor	Dostanova .S.H			Architectural and analytical part	DP	1	12		
Cons	sultant	Kozyukova .N.V						12		
Controller		Bek .A.A	1			Civil engineering and building materials department				
Created		Khanjary .N	(Ny Khonjary		Facade					

No	Name		
1	Building		
2	rooftop cafeteria		
3	Waterfall		
4	smoking area		
5	garden		
6	parking way		
7	subway		
8	street		
9	bus station		
10	building area		

				KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP					
Sheet	N⊵doc	Sign	Date	Hotel with built-in underground parking in Semey city					
of Dep	Kozyukova .N.V	,			stage	Sheet	Sheets		
rvisor	Dostanova .S.H			Architectural and analytical part	DP	2	12		
ultant	Kozyukova .N.V								
roller	Bek .A.A	4			Construction and building materials departmen				
ted	Khanjary.N	(In the maniary		floor scheme					
	Sheet of Dep ervisor sultant roller ted	Sheet N≥doc f of Dep Kozyukova .N.V ervisor Dostanova .S.H eultant Kozyukova .N.V roller Bek .A.A ted Khanjary.N	Sheet N≥doc Sign d of Dep Kozyukova .N.V envisor Dostanova .S.H sultant Kozyukova .N.V roller Bek .A.A ted Khanjary.N	Sheet Nedoc Sign Sheet Nedoc Sign I of Dep Kozyukova .N.V envisor Dostanova .S.H sultant Kozyukova .N.V roller Bek .A.A ted Khanjary.N	Image: Sheet Nedoc Sign Date Sheet Nedoc Sign Date If of Dep Kozyukova .N.V Architectural and analytical part sultant Kozyukova .N.V Image: Sheet Image: Sheet If of Dep Kozyukova .N.V Image: Sheet Architectural and analytical part Image: Sheet Nedoc Sign Image: Sheet Architectural and analytical part Image: Sheet Nedoc Sign Image: Sheet Image: Sheet Image: Sheet Image: Sheet Nedoc Sign Image: Sheet Image: Sheet Image: Sheet Image: Sheet Nedoc Sign Image: Sheet Image: Sheet </td <td>Sheet Nedoc Sign Date Sheet Nedoc Sign Date I of Dep Kozyukova .N.V Architectural and analytical part Stage Sultant Kozyukova .N.V Image: Stage DP State Image: Stage Image: Stage Image: Stage State Image: Stage Image: Stage Image: Stage</td> <td>Sheet Nedoc Sign Date Sheet Nedoc Sign Date A of Dep Kozyukova .N.V Architectural and analytical part Stage Sheet Brvisor Dostanova .S.H Architectural and analytical part DP 2 Bruitant Kozyukova .N.V Image Sheet Construction and materials depart</td>	Sheet Nedoc Sign Date Sheet Nedoc Sign Date I of Dep Kozyukova .N.V Architectural and analytical part Stage Sultant Kozyukova .N.V Image: Stage DP State Image: Stage Image: Stage Image: Stage State Image: Stage Image: Stage Image: Stage	Sheet Nedoc Sign Date Sheet Nedoc Sign Date A of Dep Kozyukova .N.V Architectural and analytical part Stage Sheet Brvisor Dostanova .S.H Architectural and analytical part DP 2 Bruitant Kozyukova .N.V Image Sheet Construction and materials depart		

KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP

Hotel with built-in underground parking in Semey city

	-			
	stage	list	scale	
tural and analytical part	DP	3	12	
floor scheme	Civil engineering and buildin materials department			

					KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP						
Chan	Sheet	Nedoc	Sian	Date	Hotel with built-in underground parking in Semey city						
	Cheel	112000	- Cigii			1.		1.			
Head	of Dep	Kozyukova .N.V				stage	list	scale			
Supe	rvisor	Dostanova .S.H			Architectural and analytical part	DP	4	12			
Cons	ultant	Kozyukova .N.V						12			
Contr	oller	Bek .A.A				0. 11					
Creat	ted	Khanjary.N			floor scheme	Civil engineering and building materials department					

Note: explanation of the premises is located in Appendix A

					KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP					
Chan.	Sheet	N⊵doc	Sign	Date	Hotel with built-in underground parking in Semey city					
Head	of Dep	Kozyukova .N.V	1			stage Sheet		Sheets		
Supe	rvisor	Dostanova .S.H			Architectural and analytical part	DP	5	12		
Cons	ultant	Kozyukova .N.V	1							
Contr	Controller Bek .A.A			Civil opgingoring and building						
Creat	ed	Khanjary.N	(Ny Hoonjary		floor scheme	materials department		nent		
			1							

Note: explanation of the premises is located in Appendix A

					KazNITU-5B072900-Civil Engeneering-Stb-08.03.2021-DP					
					Hotel with built-in underground parking in Semey city					
Chan	Sheet	Nºdoc	Sign	Date				_		
Head	of Dep	Kozyukova .N.V				stage	Sheet	Sheets		
Supe	rvisor	Dostanova .S.H			Architectural and analytical part	DP	6	12		
Cons	sultant	Kozyukova .N.V	1							
Contr	roller	Bek .A.A	4							
Creat	ted	Khanjary.N	(N +nonjary		floor scheme	materials department		nent		

<u>|</u>1

	stage	list	scale		
ural and analytical part	DP	7	12		
Section scheme	Civil engineering and building materials department				

Column reinforcement specification

position	Design C	Diameter, steel grade	Length мм	NO.	Mass per. kg/m.	Note
1	EU 2-2004	Ø18S500	3200	12	2	
2	EU 2-2004	Ø10S275	400	25	0.62	
			Material			
			C30/37			37

Column steel consumption

	Reinforcement products					
	reinforcement class					
Brand	S500	S275 Total				
	EU 2-2004					
	Ø18	Ø10				
K-1	151.03	9.8	160.83			

					KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP					
Chan	Sheet	N⊵doc	Sign	Date	Hotel with built-in underground parking in Semey city					
Head	of Dep	Kozyukova .N.V				stage	Sheet	Sheets		
Supe	rvisor	Dostanova .S.H			Calculation and design part	DP	8	12		
Cons	ultant	Kozyukova .N.V						12		
Contr	roller	Bek .A.A	4			Civil engineering and building materials department		and huilding		
Creat	ted	Khanjary . N	(1) whomany		CC4 Column			ent		

rcement	products
---------	----------

Column steel consumption

	Reinforce
	reinforce
Brand	S500
	EU 2-2004
	Ø20
K-1	200

1.	-1

					-					
					KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP					
					Hotel with built-in underground parking in Semey city					
Chan	Sheet	Nºdoc	Sign	Date						
Head	of Dep	Kozyukova .N.V				stage	list	scale		
Supe	rvisor	Dostanova .S.H			Calculation and design part	DP	9	12		
Cons	ultant	Kozyukova .N.V					-	12		
Contr	Controller Bek .A.					Civilono	incoring	and huilding		
Creat	ted	Khanjary . N			1 <i>CB1 Beam</i>		s departm	neering and building department		

Column reinforcement specification

Length мм	NO.	Mass per. kg/m.	Note
6000	5	2.466	
1000	30	0.62	
Material			
C30/37			37

ment products		
ment class		
	S275	Total
	Ø10	
	9.8	160.83

General site plan

A general site plan or a plot plan could be a style of drawing employed by architects, landscape architects, urban planners, and engineers which shows existing and proposed conditions for a given area, typically a parcel of land which is to be modified. Sites plan typically show buildings, roads, sidewalks and paths/trails, parking, drainage facilities, samitary sewer lines, lighting, and landscaping and garden elements.

Such an inspiration of a site could be a "graphic representation of the arrangement of buildings, parking, drives, landscaping and the other structure that's a part of a development project".

A site plan may be a "set of construction drawings that a builder or contractor uses to form improvements to a property. Counties can use the location attempt to verify that development codes are being met and as a historical resource. Site plans are often prepared by a design consultant who must be either a licensed engineer, architect, designer or land surveyor"

Site plans includes site analysis, building elements, and planning of varied types including transportation and concrete. An example of a site plan is that the plan for Indianapolis[4] by Alexander Ralston in 1821.

The specific objects and relations are shown are obsessed with the aim for creating the plot plan, but typically contain: retained and proposed buildings, landscape elements, above-ground features and obstructions, major infrastructure routes, and important legal considerations like property boundaries, setbacks, and rights of way.

Master plan areas

	Name of construction	Area
	construction area	8220m ²
	Temporary houses for Labors	1200m ²
	Water Tang	70m ²
	Parking Area for large cars	120m ²
	Temporary road forTransportation	
	Temporary house for materials	1400m ²
	gate of construction	7m²
	Toilets for worker	150m ²
	Construction waste bins	25m ²
)	Offices	54m ²

KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP

Hotel with built-in underground parking in Semey city

	stage	Sheet	Sheets
onal and technological part	DP	10	12
ruction master plan	<i>Civil eng</i> materials	<i>ineering</i> a s departm	and building pent

Concreting calendar schedule

		Scope	e of work		Necessary	nber	bu																	
	Name of work	Measure.	Number	Labor cost	Brand	number	ift nur	worki days						05/	/09/	202	1				14/1	10/2	:021	
					Brana		чs		2	4	6 8	10	12	14 16	6 18	20 2	22 24	4 26	28 3	0 2	4	6 8	10	12 14
1	Laying of concret	m ²	2	4,1		3	1	5	-															
2	Installation of the foundation	pcs	60,5	4,5		3	1	15	-	_	-													
3	Reinforcement of the foundation	pcs	15,16	12,1		-	1	18			-		-											
4	Instalation of formwork	pcs	8,62	9,6	Concrete pump	2	1	8					+	_	-	-								
5	Concrete purring	m ³	121,6	11,43	ABIN 75/52	3	1	6								+	_		-	-				
6	Removing of formwork		87,54	16,5		2	1	9												-		—	÷Π	
7	Concrete care		19,08	4,9		4	1	3																

			-							
				KazNITU-5B072900-Civil Engineer	ring-02.08	3.02-2021	-DP			
Sheet	N≌doc	Sign	Date	Hotel with built-in underground	parking	in Seme	ry city			
of Dep	Kozyukova .N.V				stage	Sheet	Sheets			
rvisor	Dostanova .S.H			Organizational and technological part	DP	11	10			
ultant	Kozyukova .N.V	ſ					12			
oller	Bek .A.A	1			Civil and	vinaarina	and huilding			
ed	Khanjary .N	(A) Khonjary		<i>Concreting</i> scheme	<i>Civil engineering</i> and building materials department					
	Sheet T of Dep rvisor sultant roller ted	Sheet N₂doc I of Dep Kozyukova .N.V rvisor Dostanova .S.H sultant Kozyukova .N.V roller Bek .A.A ted Khanjary .N	Sheet N≥doc Sign I of Dep Kozyukova .N.V rvisor Dostanova .S.H sultant Kozyukova .N.V roller Bek .A.A ted Khanjary .N	Sheet N≥doc Sign Date I of Dep Kozyukova .N.V rvisor Dostanova .S.H sultant Kozyukova .N.V roller Bek .A.A ted Khanjary .N	Image: Sheet Nedoc Sign Date Sheet Nedoc Sign Date Image: Sheet Kozyukova .N.V Organizational and technological part Image: Sheet Khanjary .N Image: Sheet Concreting scheme	Image: Sheet Nedoc Sign Date Sheet Nedoc Sign Date Image: Sheet Kozyukova .N.V Image: Sheet Organizational and technological part DP Image: Sheet Khanjary .N Image: Sheet Civil eng material Image: Sheet Image: Sheet Image: Sheet Civil eng material	KazNITU-5B072900-Civil Engineering-02.08.02-2021 KazNITU-5B072900-Civil Engineering-02.08.02-2021 KazNITU-5B072900-Civil Engineering-02.08.02-2021 KazNITU-5B072900-Civil Engineering-02.08.02-2021 KazNitu-sin underground parking in Seme Sheet Nedoc Sign Date Kozyukova .N.V Organizational and technological part Sultant Kozyukova .N.V Foller Bek .A.A Khanjary .N Maximum Khanjary .N Civil engineering materials departing			

General information about concreting

Concreting is one of the most important, challenging and attractive stages of construction in the world, which is

Prior to the early eighteenth century, concreting was an unfamiliar word. In 18322, it was the Egyptians who initiated the concreting industry and the construction of strong structures using a combination of gypsum and

In general, pouring concrete at very high and low temperatures leads to lack of concrete resistance, so it is better to do the formwork at the right temperature.

Pouring concrete at very low temperatures is a problem due to the freezing of water inside the concrete. When water freezes, cement and sand particles shrink. By reducing the adhesion between the concrete components, its

If you have to make concrete at low temperatures, use a chlorine-nitrate solution to prevent water from freezing for concreting. Of course, using hot water to prepare concrete can reduce the difficulty of pouring concrete in

Pouring concrete at high temperatures reduces the strength of concrete due to increased long-term productivity, thermal cracking and the tendency to shrink due to drying, reduced concrete strength, increased corrosion rate of

Calendar schedule of works

		v	olume	Labor is	ntensity day	Necessary m	achines	~	composition of the briga	je							01,Ju	une,202	1 -31,S	ep, 2021									01	Oct, 202	1 - 30,M	arch,202	2			1					(1,Apr,20	22 - 30	June,20)22
Nº	Type of works	measure	number				machine/	ulter o	qualification	duratio	n 1 5	5 10	15 20 2	5 30	1 5 1	15 20	25 31	1 5	10 15	5 20 25	31 1	5 10	15 20 31	1 1 5	10 15 2	0 25 30	1 5	10 15	20 25	31 1	5 10 1	20 25	31 1	5 10	15 28	1 5	10 15	20 25	30 1	5 10	15 20	25 31 1	5 1	0 15 20	0 25
		unit.	number	normative-	accepted	name	shift	5.	quanication num	Der Orwor	1 5	5 10	15 20 2	25 30	35 40 4	5 50 55	60 65	70 75	5 80 85	5 90 95	100 105	110 115 12	20 125 13	0 135 140	45 50 1	5 160 165	170 175	180 85	190 195	200 205	10 215 22	0 22523	235240	24525	025526	0265270	275280	285290	295 300	805810	315 320	25830 33	3534034	+585035	5860
1	Leveling of the soil	1000m ²	1,28	-	-	bulldozer DZ35C	0,054	1	leveller VP-8A 1	0,05	4																																		
2	Removing of the topsoil	1000m ²	0,038	-	-	bulldozer DZ35C	7,75	1	Machinist Bp-1 1	0,76		Π																				П				Π							T	\square	П
3	Excavation of a foundation trench	100 m²	3,02	24,11	21,96	excavator DZ0551	23,35	3	Machinist Bp-1 1	7,78								П														П				П									Π
4	manual excavation of soil	100 m ²	6,81	-	-	excavator DZ0551	0,24	1	Machinist Bp-1 1	0,24					-			\square			П			\square								\square		\square		\square							\square	\mathbf{T}	Π
5	soil compaction	100 m ²	0,68	20,31	18,48	-	- 1	2	compactor 2	4,5		+	14					Ħ			Н			\square								++		Ħ		Ħ							++	++	Ħ
6	Laying concrete	100 m ²	0.10	1.79	1.62	Concrete pump	0 35	1	concreting 4p-13p-1 2	0,8		+			╘			Ħ			Н			\square										\square		Ħ							++	++	Ħ
7	Installation of foundation	100pcs	0.35	9,1	8,27	crane CKG63/100	2.42	2 6	installer 4	1,1					╈	┇┼		Ħ			H											++				++							++	++	Ħ
8	Installation of poles	100pcs	0,82	53,41	48,55	crane CKG63/100	7,53	2 ^{ir}	nstaller 5	4,9		+				╞╪╴		╞╡			H											++				Ħ							++	++	\square
9	Installation of reinforcements	100pcs	0,55	45,1	41	crane CKG63/100	3,86	2 6	installer 5	4,1		\square		+				TF		┿	Ш											++		Ħ		\square							++	++	Ħ
10	Installation of formwork	100pcs	0,22	15,78	14,35	crane CKG63/100	2,38	2 ⁱⁱ	installer 4	1,8		\top						\square										П				\square		H		\square						+		++	Π
11	Roofing	100pcs	1,11	28,16	25,6	crane CKG63/100	2,88	2 ^{ir}	nstaller 4	3,2		\top											┥┼											H		\square								+	Π
12	stairs	100pcs	1,2	38,02	34,6	crane CKG63/100	44,77	2 ^{ir}	nstaller 4p-2.3p-2 4	4,3		\square						Ħ			Ш		╆		-							++		Ħ		Ħ						++	++	++	Ħ
13	Installation of partition walls	100pcs	0,34	11,85	10,77	crane CKG63/100	1,19	2 ⁱⁱ	installer 4	1,3		\top													-									\square		\square						+		++	Π
14	Installation of farms	100pcs	0,09	13,61	12,37	crane CKG63/100	20,92	2 5	installer 5 5p-1,4p-2,3p-2 5	1,2		\square						Ħ			Ш				┤┿	-						++		Ħ		\square						++	++	++	Ħ
15	Installation of wall panels	100pcs	0,39	27,98	25,43	crane CKG63/100	4,10	2	installer 5p-1,4p-2,3p-2 5	2,5		\top														++										\square						++	\square	++	Π
16	Waterproofing of basement walls	100 m ²	1,45	6,11	5,55	-	-	2	insulator 2 4p-1,3p-1	1,4		\square						\square				-						\square						П		\square							\square	\square	Π
17	Re-compaction of soil	100 m ²	47,86	268,01	-	bulldozer DZ35C	1,3	1	machinist 6p-1 1	1,3		Π						П			H													\square		П							\square	\square	Π
18	Making brick partition walls	1000pcs	1,02	17,46	15,87	crane CKG63/100	- 1	2	4p-2,3p-2 4	2																										\square							\square	++	Π
19	Laying of roof structure	100 m²	23,45	66,13	60,123		-	2	roofer 5p-2,4p-2,3p-2 6	5,1		П						П									-	\square	┢			\square		П		П								\square	Π
20	installation curtain walls	100m²	1,49	24,99	22,71		-	2 (carpenter 6p-1,5p-1,4p-2 4	2,8		Π						П										-	\vdash			\square		П		П								\square	Π
21	Installation of doors and windows	100m²	0,79	75,73	68,84	crane CKG63/100	1,54	2	installer 5p-1,4p-1,3p-2	8,6		Π						П											-			++	-	П		П								\square	Π
22	Installation of partition walls	100 m²	2,05	164	149,1		1,05	2	- 8	9,3		Π						П														++		┢╎		П								\square	Π
23	Facade cladding	100m²	6,42	175,74	159,76		-	2	- 8	9,7		Π						\square			П			\square								\square		\square	++	\square		-					\square	\square	Π
24	Plastering the ceiling and walls	100m²	24,78	6,28	571	mixer CO-130A	-	2	- 12	23,8		Π						\square			П			\square				Π				\square		П		\square							\square	\square	Π
25	Facade cladding	100m²	7,69	154,76	140,76	-	-	2	- 8	8,7		\square						\square			П			\square										П		\square							\square	\square	Π
26	Laying floors	100m²	9,99	78,42	712,29	crane CKG63/100	-	2	- 12	29,6		Π						П			П							Π						П		\square						┿	∓	┿	₽
27	Installation of decorative glasses	100m ²	84,48	21,3	19,36	-	-	1	- 4	4,8		П						П			П							П						П		П							\square	\square	Π
28	Total			1348,15	2188,23	-		-		145,6	3	П						П			П															П							\square	\square	Π
29	Ventilation and head control	2,5%		33,7	54,7			2 9	heat tech 5p-2,4p-2,3p-2 6	4,5		Π						П														\square		П		П								\square	H
30	Plumbing work	2%		26,96	43,76			2 5	santech 5p-2,4p-2,3p-2 6	3,6		Π						\square					-11	\square								\square		Π		\square							\square	++	Π
31	Electrical work	5%		67,40	109,41	-		2 9	electrich 5p-2,4p-2,3p-2 6	9,1		Π						+			H			\square								\square		Π		\square							\square	\square	Π
32	Landscaping works	1,5%		20,22	32,82	-		2	- 4	2,73		Π		П				П										Π				ТГ		П		П								\square	Π
33	transfer of object	1%		13,48	21,88	-		2	- 4 6p-2,5p-2	4,1		Π		Π																												\square		\square	\square
34	Other works	6%		80,88	131,29	-		2 (6p-2,5p-2,4p-2 6	10,9	•				-								++		- -																			\square	\square
	•																																												
33 34	transfer of object Other works	1% 6%		13,48 80,88	21,88 131,29	-		2	6p-2,5p-2,4p-2 6	4,1 10,9					-								++		- -																				\square

$$K_{her} = \frac{nmax}{ncp} : < 1.5 = \frac{20}{20} = 1 < 1.5$$
$$ncp = \frac{Q}{p} = \frac{11000}{550} = 20$$

Technical and economical indicators

	News		indicators
N₀	Name	unit	accepted
1	Construction duration	day	550
2	Total labor intensity	man - day	11000
3	Average number of labor	man	20
4	Maximum number of labor	man	34
-			

					KazNITU-5B072900-Civil E
					Hotol with built in under
Chan	Sheet	N₂doc	Sign	Date	
Head	of Dep	Kozyukova .N.V			
Supe	rvisor	Dostanova .S.H			Organizational and technologic
Con	sultant	Kozyukova .N.	1		
Conti	roller	Bek .A.A			
Crea	ted	Khanjary .N	(1) Hanjary		Calendar schedule

Civil engineering and building

materials department

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН СӘТБАЕВ УНИВЕРСИТЕТІ

RESPONSE

OF THE SUPERVISOR

for the graduation project

<u>Khanjary Nazifullah</u> 5B072900-Civil Engineering

Topic: «Hotel with built-in underground parking in Semey»

Graduation project of Khanjary Nazifullah made in accordance with the requirements and includes all the necessary sections of the diploma project.

In the Architectural part, facades, sections, floor plans and connection nodes of structures are presented. The thermotechnical calculation of the wall fencing was made.

In the constructive section, the calculation of the column, crossbar on the LIRA CAD program is performed. In the technological part, technological maps for concrete works have been developed.

The economic part of the project is calculated according to the program of ABC. All drawings are made in Autocad.

In general, the graduation project was performed at a good level, the student Khanjary Nazifullah showed good knowledge both during training and during the implementation of the project. The work deserves a good grade.

Supervisor Doctor of technical sciences, lecturer

____Dostanova S.Kh

«30»<u>may</u> 2021 yr.

Протокол анализа Отчета подобия Научным руководителем

Заявляю, что я ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: Ханджари Назифуллах

Hasbahue: Hotel with built-in underground parking in Semey

Координатор:Сауле Достанова

Коэффициент подобия 1:9.6

Коэффициент подобия 2:7

Замена букв:47

Интервалы:0

Микропробелы:51

Белые знаки: 0

После анализа Отчета подобия констатирую следующее:

- обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, признаю работу самостоятельной и допускаю ее к защите;
- □ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, не допускаю работу к защите.

Обоснование:

.....

.....

.....

Дата

Подпись Научного руководителя

Протокол анализа Отчета подобия

заведующего кафедрой / начальника структурного подразделения

Заведующий кафедрой / начальник структурного подразделения заявляет, что ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: Ханджари Назифуллах

Hasbahue: Hotel with built-in underground parking in Semey

Координатор: Сауле Достанова

Коэффициент подобия 1:9.6

Коэффициент подобия 2:7

Замена букв:47

Интервалы:0

Микропробелы:51

Белые знаки:0

После анализа отчета подобия заведующий кафедрой / начальник структурного подразделения констатирует следующее:

□ обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, работа признается самостоятельной и допускается к защите;

□ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

□ обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, работа не допускается к защите.

Обоснование:

••••••

.....

начальника структурного подразделения

Окончательное решение в отношении допуска к защите, включая обоснование:

Дата

Подпись заведующего кафедрой /

начальника структурного подразделения